Чтение онлайн

на главную - закладки

Жанры

Введение в логику и научный метод
Шрифт:

Распределение частот между различными интервалами всегда должно выражаться суммарным образом. Для этого используются два типа статистических чисел. Один тип обозначается как среднее статистическое число. Вообще статистическое среднее обозначает то, что может быть названо «положением при распределении», т. е. численным значением, вокруг которого центрируются различные предметы. Второй тип чисел обозначается как дисперсные, или девиантные, числа. Они указывают степень изменения предметов относительно статистического среднего. Два набора предметов могут обладать общей центральной тенденцией, хотя величина отклонений (девиаций) в этих наборах может быть разной. Так, в двух наборах чисел 3, 4, 5, 6, 7 и 1, 3, 5, 7, 11 величина дисперсии (рассеивания) является разной. Другие типы статистических чисел могут также использоваться для описания распределения вокруг центра, однако мы не будем на них останавливаться.

§ 2.

Статистическое среднее

Каким образом выбирается число, представляющее центральную тенденцию, присущую группе качеств? Какие условия нужно наложить на статистическое среднее и какой значимостью оно обладает? Существует несколько видов средних чисел, каждое из которых обладает своими преимуществами и имеет свои ограничения. Ни одно среднее число не является подходящим для всех возможных целей, т. к. каждое применяется для определенной цели. Однако, в общем, средние числа используются по следующим причинам: 1) они требуются для сводной репрезентации какой-либо группы, 2) они используются как способы сравнения различных групп, 3) они используются для характеристики целой группы на основе взятых из нее образцов. Следовательно, существуют некоторые очевидные качества, которыми должны обладать средние числа.

1. Средние числа должны определяться настолько недвусмысленно, чтобы их численное значение не зависело от прихотей индивида, высчитывающего их.

2. Средние числа должны быть функцией всех предметов группы; в противном случае они не будут представлять то или иное распределение в его цельности.

3. Средние числа должны обладать сравнительно простой математической природой, чтобы их можно было без труда высчитывать.

4. Средние числа должны допускать проведение над ними алгебраических манипуляций. Если нам известна, к примеру, средняя высота для каждой из двух последовательностей высот, то мы на этом основании можем высчитать среднюю высоту большей последовательности, полученной в результате объединения двух исходных последовательностей.

5. Средние числа должны быть относительно стабильными. Если мы выберем из группы несколько подходящих образцов, то средние числа для разных примеров будут разными. Мы редко нуждаемся в среднем числе, в котором такие различия будут как можно меньшими.

Среднее арифметическое

Самое известное среднее число – это среднее арифметическое. Оно получается в результате сложения набора качеств и деления полученной суммы на количество членов. Если число часов сна для некоторого студента в течение недели равно 7, 6, 6, 5, 8, 7, 9, то среднее арифметическое этой суммы будет равняться 48/7, или 66/7, часа. Читатель может обратить внимание, что среднее арифметическое не равняется числу часов, которые студент просыпает в какой-либо конкретный день. Это обстоятельство с ясностью указывает на то, что средние числа представляют свойства группы и не дают никакой информации о каком-либо индивиде из группы.

Среднее арифметическое выполняет первое, второе и третье из сформулированных выше условий для средних чисел. Ниже мы увидим, что четвертое условие им также выполняется. Однако читателю не следует заблуждаться относительно кажущейся точности, якобы получаемой в результате таких арифметических манипуляций. Мы можем выразить среднее число часов, которые проспал студент, десятичной дробью и получить 6,85914 часа, или 6 часов 51 минуту и 25,7 секунды. Арифметический расчет здесь вполне точный. Однако неверно считать, что данный результат говорит о том, что время, проведенное во сне, в точности соответствует среднему арифметическому. Студент мог сообщить о времени, проведенном во сне, лишь приблизительно с точностью до часа. Он вполне мог бы посчитать 6 часов 15 минут реального времени сна как просто 6 часов. Следовательно, нам следует признать, что точность вычисления в приведенном примере будет кажущейся, если исходные наблюдения не были проведены с такой же долей точности.

Является ли среднее арифметическое удовлетворительной основой для сравнения двух групп? Если средний доход некоторой общины равен $1500, а другой – $1100, то правильно ли на основании этого умозаключать, что члены первой общины состоятельнее членов второй? Нижеследующий пример призван показать, что подобное умозаключение может оказаться ложным, если среднему арифметическому не сопутствует дополнительная информация. Предположим, что в некотором классе студенты имеют в кармане следующие суммы денег: 8 студентов имеют по 50 центов, 4 – по 75 центов, 2 – по $1,50, 1 имеет $11 и 1 имеет $27. Среднее арифметическое для всего класса равняется $3. Предположим также, что в другом классе 9 студентов имеет по 1 доллару, 4 – по $1,50, 1 студент имеет $2 и 1 – $3. Среднее арифметическое для всего класса равняется $1,662/з. Несмотря на то

что среднее арифметическое первого класса выше, в нем у 12 студентов (т. е. у 2/з всего класса) меньше денег, чем у любого студента из второго класса. Если мы проанализируем способ высчитывания среднего арифметического, то мы поймем, почему оно так часто является ненадежной основой для сравнений. Дело в том, что значение среднего арифметического подвержено серьезному влиянию сильных изменений в значениях отдельных членов рассматриваемого множества. В приведенном примере наличие в группе относительно небольшого числа очень богатых студентов может существенно повысить среднее арифметическое. Иными словами, две группы могут обладать одним и тем же средним арифметическим, но область изменения внутри этих групп может быть очень разной. Среднее арифметическое не сообщает ничего относительно однородности группы. Поэтому в статистике также требуется и измерение дисперсии.

Несмотря на этот недостаток, среднее арифметическое является важным средним числом в силу его математических свойств и простоты получения. Над ним можно проводить алгебраические манипуляции. Так, предположим, что некий студент получает в течение года следующие оценки по некоторому предмету: 80, 75, 95, 60, 70; среднее арифметическое равняется 74. Во второй год он получает 80, 70, 60, 75, 65, и среднее арифметическое равно 70. Каково среднее арифметическое его оценок за два года? Мы можем сложить десять полученных оценок и разделить результат на 10. Но мы также можем сложить и два средних арифметических и разделить их на 2. В результате мы получим среднюю оценку за два года, равную 72. Данное алгебраическое свойство среднего арифметического очень удобно.

Среднее арифметическое также связано с математической теорией вероятности. Предположим, некий химик проводит несколько сотен измерений веса кислорода. Каждое измерение дает разный результат. Каково «истинное значение» веса кислорода? Если мы примем ряд допущений о том, каким способом могут изменяться значения измерений, например, если мы допустим, что все измерения были проведены с одинаковой точностью, то наиболее вероятное значение веса кислорода будет представлять именно среднее арифметическое.

Среднее взвешенное

Во многих примерах использование среднего арифметического не поможет. Так, преподаватель может разделить на две части работу, рассчитанную на семестр. Он может вызывать некоторого студента к доске пять раз в течение первой половины семестра и поставить ему следующие оценки: 10, 9, 8, 10, 8. Во второй половине семестра он может вызвать его всего лишь дважды и поставить ему 0 и 4. Теперь предположим, что преподавателю нужно высчитать итоговую оценку, и для этого он высчитывает среднее арифметическое за первую половину семестра, которое равно 9, среднее арифметическое за вторую половину семестра, равное 2, а затем находит среднее арифметическое для двух половин. Итоговая оценка студента в таком случае будет равняться 5,5. Справедливо ли это? Если предположить, что работа, проделанная в первой половине семестра, является такой же важной и сложной, как работа, проделанная во второй половине, то студент будет прав, если посчитает такую оценку несправедливой. Он сможет требовать, чтобы средние оценки за каждую половину семестра взвешивались соответственно тому количеству раз, которые он выходил к доске. Тогда истинная итоговая оценка будет высчитываться следующим образом:

и тогда она будет удовлетворительной. Числа 5 и 2, на которые умножаются средние арифметические, называются весами.

Однако очевидно, что в данном примере использование весов не было необходимым, поскольку студент мог высчитать итоговую оценку, отыскав среднее арифметическое всех полученных оценок. В подобных примерах взвешивание используется только из соображений арифметического удобства. Более показательным применением среднего взвешенного будет установление изменения прожиточного минимума на протяжении периода в несколько лет. Рассмотрим несколько абсурдный пример. Предположим, что для следующих 5 пунктов цена в 1910 году была номинальной или равной 100, а в 1920 году пшеница стоила 120, говядина – 110, железо – 105, ювелирные изделия – 50, средство для волос – 40. Среднее арифметическое этих предметов для 1920 года равнялось 85. Мы не можем заключить, что прожиточный минимум снизился, поскольку перечисленные предметы обычно не рассматриваются как равнозначные. Поэтому мы можем приписать им различные веса для обозначения того, что мы понимаем под относительной важностью. Предположим, мы решим, что следующие числа означают важность указанных пунктов в том порядке, в котором они были перечислены: 10, 9, 7, 2, 1. Среднее взвешенное высчитывается следующим образом:

Поделиться:
Популярные книги

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Восход. Солнцев. Книга I

Скабер Артемий
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга I

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Возлюби болезнь свою

Синельников Валерий Владимирович
Научно-образовательная:
психология
7.71
рейтинг книги
Возлюби болезнь свою

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Ротмистр Гордеев 2

Дашко Дмитрий
2. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 2

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Город драконов

Звездная Елена
1. Город драконов
Фантастика:
фэнтези
6.80
рейтинг книги
Город драконов

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец