Я – суперорганизм! Человек и его микробиом
Шрифт:
Таким образом, это небольшое исследование демонстрирует нам картину своего рода эластичности (термин, который все чаще применяют при описании микробиомов здоровых людей). Два изученных индивидуальных микробиома отличались друг от друга, но проявляли стабильность. Удалось получить свидетельства микробной конкуренции в случае обоих наборов видов, причем численность близкородственных штаммов иногда резко и взаимозависимо менялась (у одного возрастала, у другого падала), а значит, есть основания предполагать, что соответствующий штамм получал какие-то конкурентные преимущества. Впрочем, такие незначительные ежедневные подвижки в экологии микробиома не очень влияли на общую картину.
Другие исследования (например, проводившееся лабораторией Джеффри Гордона в 2013 году) подтверждают, что состав кишечного микробиома стремится к относительной стабильности. Гордон и его коллеги изучали пробы, которые отбирались у троих взрослых на протяжении 5
76
Claesson, 2012.
Впрочем, сначала они пожирают питательные вещества, которые вытекают из наших умирающих клеток. Это, между прочим, тоже можно изучать. Микробный ансамбль, обитающий на трупе, даже носит подобающее научное название: танатомикробиом. Как полагает Питер Нобл из Алабамского университета, изучение этого микробиома может пригодиться криминалистам – например, для оценки времени смерти [77] . Впрочем, к этому печальному моменту никакого суперорганизма уже не существует, так что самое время перейти к широкомасштабной истории микробиомов.
77
Can, 2014; Williams, 2014.
Эволюционируя вместе
За индивидуальной историей о том, что формирует кишечный микробиом каждого из нас, стоит куда более долгая эволюционная история, способная поведать, каким образом человек (как биологический вид) вообще стал уживаться со всеми этими микроскопическими видами. Новые технологии помогают собрать воедино разрозненные части этой головоломки, в частности, путем расщепления микробиомов многих других существ. Назовите человека суперорганизмом, и это звучное имя наполнит человека гордостью. Однако если оглянуться вокруг, тут же выяснится, что почти все прочие создания – тоже суперорганизмы. Всегда ли они являлись такими «суперами»? Может быть, они приобретали это качество постепенно?
Мы знаем, что бактерии появились на Земле примерно за 2 миллиарда лет до всех прочих организмов. Никто не оспаривает этого их эволюционного преимущества. Главный вопрос: как они участвовали в эволюции более сложных существ? Известно, что бактерии сыграли важнейшую роль при возникновении эукариот; не забудем, что бактерии – предки митохондрий. Но что произошло после того, как недавно появившиеся эукариоты стали всё шире распространяться в бактериальном мире?
Вероятно, поначалу эти отношения были просты и незамысловаты. Возьмем для примера часто встречающееся одноклеточное. У его клетки имеется ядро, а значит, это эукариота, как и мы с вами. Она имеет более или менее яйцевидную форму, а на одном конце у нее хвостик, точнее – одиночный подвижный кнутообразный жгутик. Вглядитесь, и вы увидите, что основание жгутика окружено воротничком из нескольких десятков микроворсинок.
С помощью жгутика эта тварь движется в воде, а воротничок жгутиковых захватывает всякие штуки, несомые течением, в том числе и бактерии. Затем клетка их поедает. Это воротничковый жгутиконосец (хоанофлагеллата) – одна из самых простых эукариот. Соответствующих окаменелостей, конечно, не сохранилось, но архив, содержащийся в его геноме, заставляет предположить, что это существо приобрело более или менее современную форму уже 800–900 миллионов лет назад. Данные ДНК указывают: создание, жившее тогда, могло стать общим предком для представителей двух эволюционных ветвей – современных хоанофлагеллат и первых животных.
Теперь ученые полагают, что эти существа уже тогда взаимодействовали с бактериями
Впрочем, в этом вынуждает усомниться другое наблюдение. Колония хоанофлагеллат с виду очень похожа на губку. А морские губки – самые простые из сегодняшних многоклеточных – зачастую полны микробов-симбионтов, составляющих до трети их общей клеточной массы. Поскольку губки, как и хоанофлагеллаты, питаются бактериями, должна существовать некая система взаимного распознавания, которая позволяет некоторым бактериям спокойно жить вместе с клетками губки, не опасаясь за свою жизнь.
В этом может заключаться убедительное (хотя и косвенное) доказательство того, что бактерии теснейшим образом сосуществовали с многоклеточными уже с первого их появления. Биологи о таком почти не думали вплоть до 1980-х годов, когда эволюционные взаимоотношения начали проясняться благодаря работам Карла Вёзе по классификации бактерий. Разнообразие бактерий повсюду, выявляемое массовым ДНК-секвенированием, побудило исследователей обратить больше внимания на то, как микробы взаимодействуют со всеми прочими существами.
Важное значение исследования совместной эволюции бактерий и всех позже возникших видов следует просто из огромного диапазона изучаемых сегодня микробиомов. Тли, муравьи, бабочки, вши, дрозофилы – все они часто несут на себе бактерий-симбионтов, и мы уже понимаем некоторые из важнейших вещей, которые они проделывают для своих хозяев.
Вот один пример. Едва ли не самые необыкновенные межвидовые взаимосвязи демонстрируют муравьи-листорезы, собирающие зеленую массу в тропических лесах и использующие частично пережеванные листья для выращивания грибов, которые они затем употребляют в пищу, – достижение само по себе удивительное. Колония из миллионов муравьев способна ежегодно перерабатывать сотни килограммов растительной массы на своей подземной грибной ферме. В 2010 году исследователи показали, что расщеплять молекулы листьев муравьям помогает сообщество микробов, напоминающих тех, что обитают в коровьем рубце – «дополнительном желудке», где коровы – эти куда более крупные травоядные – переваривают зеленую массу. Таким образом, в ходе эволюции появилось два решения проблемы – извлечения питательных веществ из растительного материала. Коровы поддерживают существование микробиома, проделывающего эту работу внутри, муравьи же – существование микробиома, проделывающего ее снаружи [78] .
78
Чудо коэволюции в данном случае этим не ограничивается. У муравьев есть свой микробиом на поверхности их жесткого экзоскелета. Бактериальные виды этого микробиома играют еще одну ключевую роль в описанной нами системе: они вырабатывают антибиотики, сдерживающие развитие патогенов, которые иначе атаковали бы выращиваемые грибы. Муравьи представляют богатый источник питания для этих бактерий, тем самым поощряя размножение микроорганизмов, конкурирующих друг с другом посредством прямого воздействия (выделяя антибиотики), а не по скорости роста популяции. Система устроена очень изящно, ведь муравей понятия не имеет, что он занимается отбором бактериальных видов, обладающих определенным свойством. При этом не подаются какие-то специальные сигналы и не задействована какая-то особая система распознавания. Система, сложившаяся в процессе эволюции, просто создает условия, в которых «автоматический» отбор происходит благодаря тому, что различные бактерии занимаются вполне обычными для себя делами [Sheuring, 2012].
В той же статье имеется ссылка на исследование бактерий, производящих антибиотики, у других видов, в том числе у насекомых, растений, кораллов, губок, улиток и птиц (у удода, если вам так уж хочется знать). Короче говоря, куда ни глянь, везде обнаружишь микробиомы, специально подогнанные так, чтобы мелкие организмы делали какую-то работу для более крупного. Аспект эволюции, именуемый «съешь – или тебя съедят», может приводить к разного рода странностям в отношениях между ними. У термитов существует в задней кишке необычно сложный для насекомых микробиом, где имеется смесь одноклеточных эукариот и бактерий. Микробы помогают термитам переваривать пищу, позволяя им питаться лишь древесиной. Такие внушительные существа, как броненосцы и трубкозубы (африканские муравьеды), обладают кишечными микробиомами, которые позволяют им есть покрытых хитином муравьев и термитов. В сущности, здесь идет битва микробиомов.