Язык как инстинкт
Шрифт:
Мы никогда не разберемся в сущности языковых органов и грамматических генов, если ограничимся поиском участков мозга размером с почтовую марку. Вычислительные процессы, лежащие в основе ментальной жизни, возможны благодаря связям в хитроумных сетях, из которых и состоит кора головного мозга, сетях из миллионов нейронов, где каждый нейрон соединен с тысячами других, действующих в тысячные доли секунды. Что же мы увидим, если покрутим колесико микроскопа и пристально вглядимся в микросхему языковых областей? Никто этого не знает, но мне хотелось бы предложить вам обоснованную версию. Парадоксально, но это именно та сторона языкового инстинкта, о которой нам известно меньше всего и которая важнее всего, поскольку именно здесь заложены истинные причины говорения и понимания. Я предлагаю вам инсценировку того, как может выглядеть обработка грамматической информации с точки зрения нейрона. Не стоит принимать это слишком уж всерьез — это просто демонстрация того, что принцип языкового инстинкта сравним с принципом случайности попадания в лузу биллиардного шара в физическом мире, а сам языковой инстинкт — это не что-то туманное, названное биологическим термином.
Моделирование работы нейронной сети основано на упрощенной модели нейрона. Этот нейрон
Если сеть подобных нейронов-моделей достаточно велика, то она может выступать в роли компьютера, вычисляющего ответ на любой точно поставленный вопрос, подобно ползавшей по странице машине Тьюринга из главы 3, которая смогла сделать вывод, что Сократ смертен. Это стало возможно потому, что нейроны-модели могут быть соединены несколькими простыми способами, превращающими их в «логические клапаны» — приспособления, способные моделировать логические отношения «и», «или» и «не», лежащие в основе дедукции. Значение логического отношения «и» состоит в том, что утверждение «А и Б» верно тогда, когда верно А и верно Б. Клапан И, моделирующий это отношение, будет открыт в том случае, если открыты все его входы. Если допустить, что порог для нашей модели нейрона — это 0,5, то комплект входящих синапсов, вес каждого из которых меньше, чем 0,5, но сумма которых больше, чем 0,5, скажем — 0,4 и 0,4, будет функционировать как клапан И, как показано на левой схеме:
Значение логического отношения «или» состоит в том, что утверждение «А или Б» верно тогда, когда верно А или верно Б. Отсюда следует, что клапан ИЛИ будет открыт тогда, когда хотя бы один вход открыт. Для обеспечения этого каждый синаптический вес должен быть больше, чем нейронный порог, скажем 0,6, как показано на средней схеме. И наконец, значение логического отношения «не» состоит в том, что утверждение «НЕ А» верно тогда, когда А ложно и наоборот. Отсюда следует, что клапан НЕ должен закрываться, если открыт его вход и наоборот. Это обеспечивается тормозящим синапсом, показанным справа, чей негативный вес достаточен, чтобы сделать неактивным выходящий нейрон, который в противном случае всегда активен.
А вот как нейронная сеть может вывести относительно сложное грамматическое правило. Английская флексия – s, как например в Bill walks ‘Билл идет’ — это суффикс, который должен быть применен при следующих условиях: когда подлежащее стоит в третьем лице И в единственном числе И глагол в настоящем времени И действие происходит постоянно (таков его «вид», если говорить в лингвистических терминах), но НЕ тогда, когда глагол неправильный, как например: do ‘делать’, have ‘иметь’, say ‘говорить’ или be ‘быть’ (ведь мы говорим Bill is ‘Билл есть’, но не Bill be’s). Нейронная сеть, которая вычисляет эти логические отношения, выглядит так:
Во-первых, существует банк нейронов, отвечающих за характеристики флексии (нижняя половина схемы, слева). Релевантные характеристики соединены через клапан И с нейроном, отвечающим за комбинацию 3-го л. ед. ч. настоящего времени и постоянного вида (обозначенный «3енп»). Этот нейрон возбуждает нейрон, соответствующий флексии – s, который в свою очередь возбуждает нейрон, соответствующий фонеме z в банке нейронов, отображающих произношение суффиксов. Если это правильный глагол, то на этом все требуемое для суффикса вычисление закончено; произношение основы слова так, как оно указано в ментальном словаре, просто копируется элемент за элементом в нейроны основы слова по тем соединениям, которые я не обозначил. (То есть формой слова to hit будет просто hit + s, а формой слова to wug — wug + s.) Для неправильных глаголов, таких как be, этот процесс должен быть заблокирован, иначе нейронная сеть будет продуцировать неправильные be’s. Поэтому нейрон комбинации 3енп также посылает сигнал нейрону, отвечающему за всю нерегулярную форму is. Если человек, чей мозг мы сейчас моделируем, собирается использовать глагол be, то нейрон, отвечающий за глагол be, уже активен, и он тоже сообщает активацию нейрону is. Поскольку два входных сигнала к is соединены как клапан and ‘и’, оба должны включаться, чтобы активизировать is. Иными словами, если и только если человек одновременно думает о be и о третьем лице—единственном числе—настоящем времени—постоянного вида (хабитатива), то тогда будет активизирован нейрон is. Нейрон is тормозит флексию – s через клапан НЕ, образованный тормозящим синапсом, который предотвращает появление ises или he’s,
Я от руки соединил нейроны в этой сети, но это специфические английские соединения, и в реальном человеческом мозге их еще предстоит изучить. Продолжая нашу фантазию на тему нейронных сетей, попробуйте вообразить себе, как такая сеть может выглядеть в мозге младенца. Допустим, что каждая из совокупностей нейронов там уже есть изначально. Но везде, где я проводил стрелочку от одного-единственного нейрона в одной совокупности (кружку) к одному-единственному нейрону в другой, вообразите себе пучок стрелочек от каждого нейрона в одной совокупности к каждому нейрону в другой. Это соответствует тому, появления чего ребенок на врожденном уровне там и «ожидает»: например, суффиксов того или иного лица, числа, времени или вида, а также возможных нерегулярных форм для комбинаций вышеперечисленного; но при этом ребенок не знает наверняка, какие комбинации, суффиксы или нерегулярные формы встретятся в определенном языке. Их усваивание соответствует укреплению некоторых синапсов, на которые указывают стрелочки (обозначенные на схеме), и тому, что другие остаются невидимыми. Это может функционировать следующим образом. Представьте себе, что когда ребенок слышит слово с z в суффиксе, то активируется нейрон z в совокупности, соответствующей суффиксу на правом краю схемы, а когда ребенок думает о третьем лице, единственном числе, настоящем времени и постоянном виде (составные части воспринимаемого им события), то эти четыре нейрона на левом краю тоже активизируются. Если активизация распространяется назад так же, как и вперед, и если синапс укрепляется каждый раз при активизации в то же время, когда уже активен нейрон внешней связи, то укрепляются все синапсы — связи между «3-е», «единственное», «настоящее», «постоянный» — с одной стороны, и «z» — с другой стороны. Стоит этому повториться достаточное количество раз — и отчасти специфицированная нейронная сеть у новорожденного приобретает вид, характерный для взрослого человека (что я и описал).
Давайте еще больше увеличим масштаб наблюдаемых объектов. Какой же первопаяльщик позаботился о том, чтобы между совокупностями нейронов были врожденные потенциальные соединения? Эта одна из самых «горячих» тем в современной неврологии, и мы начинаем получать смутное представление о том, как закладываются связи в мозге эмбриона. Конечно, имеются в виду не языковые области у человека, но глазные яблоки у дрозофил, зрительные бугры у африканских хорьков и зрительные участки коры головного мозга у кошек и обезьян. Нейроны, предназначенные стать частью определенных областей коры, зарождаются в специфических областях вдоль стенок желудочков — наполненных жидкостью полостей в центре мозговых полушарий. Затем они перемещаются наружу по направлению к черепу до своего итогового местонахождения в коре головного мозга вдоль канатиков, образованных вспомогательными клетками, которые вместе с нейронами составляют массу мозга. Соединения между нейронами на различных участках коры часто образуются тогда, когда являющаяся целью соединения область испускает некоторое химическое вещество, и аксоны, растущие в разных направлениях от источника этого вещества, «вынюхивают» его и следуют тому направлению, в котором увеличивается его концентрация, подобно тому, как корни дерева растут в сторону источников жидкости и удобрений. Аксоны также чувствуют присутствие специфических молекул на тех поверхностях (состоящих из вспомогательных клеток), к которым они продвигаются, и могут сами определять свое направление, подобно Гензелю и Гретель, которые шли, ориентируясь на хлебные крошки. Как только аксоны достигают близости целевой области, могут образоваться более точные синаптические соединения, потому что на поверхности растущего аксона и нейрона-цели есть определенные молекулы, подходящие друг к другу как ключ и замок, которые прочно сцепляются друг с другом. Но в то же время эти изначальные соединения обычно довольно беспорядочны, поскольку нейроны обильно высылают вперед свои растущие аксоны, которые соединяются с любыми неподходящими целями. Неподходящие соединения отмирают, возможно, из-за того, что их цели не могут обеспечить химические вещества, необходимые для их выживания, а возможно, и из-за того, что образованные ими связи недостаточно используются, когда мозг начинает работать во время внутриутробного развития.
Старайтесь не отставать от меня во время этого нейро-мифологического дознания — мы начинаем приближаться к «грамматическим генам». Те молекулы, которые направляют, соединяют и сохраняют нейроны, — это белки. Структура белка определяется геном, а ген — это последовательность оснований в цепочке ДНК, которая находится в хромосоме. Ген начинает функционировать благодаря «транскрипционным факторам» и другим регулирующим молекулам — тем аппаратам, которые считывают последовательность основ где-либо в молекуле ДНК и раскрывают соседнюю цепочку, позволяя этому гену быть расшифрованным в РНК, которая затем переводится в белок. Как правило, эти регулирующие факторы сами являются белками, поэтому процесс построения организма — это хитроумное чередование того, как ДНК образует белки, некоторые из которых взаимодействуют с другими ДНК для образования новых белков и т.д. Небольшие различия во времени образования и количестве белков могут иметь огромные последствия для строящегося организма.
Таким образом, один-единственный ген редко определяет какую бы то ни было идентифицируемую часть организма. Вместо этого он обуславливает выход белка в определенное время в ходе развития, что будет составной частью непостижимо сложного рецепта, обычно влияющего на формирование комплекса частей, которые также подвержены влиянию многих других генов. В частности, у связей внутри мозга сложные взаимоотношения с образующими их генами. Молекула на поверхности может быть использована не в одной-единственной системе, но во многих, каждой из которых руководит точно установленная комбинация. Например, если существуют три белка X, Y и Z, которые могут располагаться на мембране, один аксон может прикрепиться к поверхности, на которой есть X и Y, но не Z, а другой может прикрепиться к поверхности, на которой есть Y и Z, но не X. По подсчетам ученых-неврологов, при строительстве мозга и нервной системы используется около тридцати тысяч генов — большая часть человеческого генома.