Загадки египетских пирамид
Шрифт:
Если принять для отношения h/b ранее определенное значение 14/11, то получится: p/h = 4x11/14 = 22/7 = 3,1428 — приближенное значение . Таким образом, b/h = /4. Кроме того, мы имеем между и малоизвестное отношение: 0,618 = 1/ = (/4)2 = (3.1416/4)2 = 0,617, т. е. 1/ с точностыо до одной тысячной.
С другой стороны,
откуда h/b = = 4/.
А так как h/b = 14/11, то = 14/11, и следовательно, = 1,619.
Отметим еще, что если бы мы захотели получить точное значение = 3,1416, то для этого необходимо было бы
В итоге это можно свести к следующему.
Угол наклона 51°49'42'' соответствует равенству Геродота и отношению золотого сечения.
276
Что касается угла, принятого Петри за средний после измерений, проведенных им различными методами, то он равнялся 51°52' и давал для значение 3,1402.
Угол наклона, равный 51°50'35'', соответствует величине отношения апофемы к половине стороны основания, равной 14/11, и дает = 3,1416.
Угол наклона, равный 51°50'39'', соответствует величине отношения ребра пирамиды к половине диагонали основания, равной 9/10.
Угол наклона 51°51'14'' дает = 3,1416.
Мы не будем принимать во внимание последний угол наклона, поскольку значение 3,1416 для было в ту эпоху неизвестно 277 . Максимальное расхождение между тремя первыми значениями составляет около 1', что значительно меньше средней погрешности, допускаемой при производстве строительных работ. Эти три угла наклона могут, следовательно, рассматриваться как практически совпадающие, а пропорции и отношения, им соответствующие, как равновеликие.
277
Судя по задачам, приведенным в Папирусе Ринд, египтяне эпохи Среднего царства приравнивали площадь круга к площади квадрата, сторона которого равнялась 8/9 диаметра круга, что дает для приближенное значение 3,1605.
В то же время очевидно, что при сооружении пирамиды для зодчего наиболее существенным представлялся выбор такого угла наклона сторон, который облегчил бы ее постройку и который легко было бы контролировать. Отношение h/b, т. е. отношение высоты к половине основания, определяющее форму пирамиды, должно было быть простым. Именно таким и являлось отношение 14/11, принятое для пирамиды Хеопса. Что касается геометрических свойств, присущих всякой пирамиде, имеющей наклон 14/11, то нам представляется крайне сомнительным, что они могли быть установлены зодчими Хеопса. Во всяком случае о «золотом числе» и отношении в то время, по всей вероятности, не имелось никаких представлений. С большими оговорками можно еще допустить, что в эпоху Хеопса было известно отношение, упоминаемое Геродотом.
Борхардт полагал, что на выбор зодчего повлияло только удобство отношения 14/11. Нам представляется, однако, что не такое уж оно простое, чтобы его следовало принять безоговорочно. По нашему мнению, необходимо добавить, что оно соответствует, кроме того, с точностью до 4'' более простому наклону в 9/10, принятому для ребра пирамиды по отношению к диагонали основания. Одной из сложных проблем для строителей было определение угла наклона ребра, так как именно от него зависели очертания угловых камней, установка которых предшествует кладке облицовки и направляет ее. Этот наклон несомненно легко мог быть определен по углу наклона апофемы, но возможно, что тем не менее представлялось целесообразным определять и контролировать его непосредственно. Поскольку зодчие отдельных пирамид должны были отдать предпочтение углу наклона апофемы или углу наклона ребра, мы увидим, что они колебались в выборе и их усилия были явно направлены на определение
В первоначальной мастабе Джосера, перекрытой впоследствии ступенчатой пирамидой, наружная облицовка имеет явно выраженный наклон в 4/1, т. е. наиболее распространенный во многих мастабах, как это отмечает Петри. Что же касается самой ступенчатой пирамиды, то угол наклона ее сторон равен приблизительно 74° или h/b = 7/2. Египтяне, следуя своим правилам, выразили это отношение просто как b = 2 пальмам. Тот же угол наклона встречается затем в ступенчатой пирамиде в Завиет-эль-Ариане и на первых двух стадиях строительства пирамиды в Медуме. В третьей стадии эта пирамида, по всей вероятности являющаяся первой настоящей пирамидой, имеет уже угол наклона сторон 51°50', который позднее будет использован и в пирамиде Хеопса.
После этой пирамиды были построены две большие пирамиды в Дашуре, возведенные, по-видимому, Снофру — отцом Хеопса. Первой была сооружена пирамида, находящаяся южнее, которую назвали «ромбовидной» из-за ее оригинальной формы, обусловленной изменением в процессе сооружения первоначального угла наклона ее сторон.
До высоты около 45 м этот угол, определенный более века назад Перрингом, равнялся 54°14'46'', соответствуя отношению h/b = 7/(5+1/25). У второй пирамиды в Дашуре, расположенной севернее, угол наклона апофемы (также по данным Перринга) составляет 43°36', но, поскольку облицовка не сохранилась, приведенная цифра, возможно, приблизительна и, быть может, указывает на то, что принятый угол наклона мог как раз соответствовать углу наклона 2/3 для ребра пирамиды. Было бы очень интересно проверить, не избрал ли Снофру еще раньше этот угол наклона и для верхней части своей первой пирамиды.
В пирамиде Хефрена, сооруженной после пирамиды Хеопса, сторонам придан более острый угол наклона. По данным Петри, он взял угол в 53°10', очень близкий к 53°7'48''— углу знаменитого «священного треугольника» древности со сторонами, соответственно равными 3, 4 и 5. В этом случае построение сечения по апофеме, или отношение 4/3 дает неоспоримое преимущество перед сечением по диагонали. Это ребро, однако, имея угол наклона несколько больше 43°, давало отношение высоты к половине диагонали 8.5/8, что почти так же легко реализуемо на практике, как и отношение Хеопса 9/10. По нашему мнению, с точки зрения конструкции пирамида Хефрена была проще пирамиды Хеопса и северной пирамиды Снофру в Дашуре, в которых предпочтение было отдано построению угла для грани пирамиды, а не ее ребра.
Микерин, преемник Хефрена, также пытался найти для своей пирамиды наиболее удобный угол наклона. И, по-видимому, добился этого. Угол наклона сторон его пирамиды, с трудом определенный Петри из-за неровности поверхности облицовки, равняется приблизительно 51°10', а угол в 51°20'25'' соответствует египетскому треугольнику Виолле ле Дюка с катетами, равными 4 и 5. Поперечное сечение по апофеме дает, таким образом, простое отношение 5/4, и при угле в 51°29'53'', который больше второго примерно на 9,5'', сечение по диагонали также даст простое отношение 8/9.
Таковы были очертания первых пирамид фараонов III и IV династий. В заключение отметим, что после пирамиды в Медуме, где уже был взят наклон, позднее избранный и для пирамиды Хеопса, Снофру удалось найти для «ромбовидной» пирамиды угол наклона, дающий простые отношения для построения как апофемы, так и ребер пирамиды. Но так как в процессе строительства этот угол сочли чрезмерно острым, он был соответственно изменен. Затем, при сооружении верхней части этой пирамиды, второй пирамиды Снофру, и пирамиды Хеопса основная трудность, по-видимому, состояла в построении сечения по диагонали пирамиды. В пирамиде Хефрена, наоборот, основное место занимает построение сечения по апофеме. Но окончательного решения простых отношений как для апофемы, так и для ребер строители пирамид добились лишь в пирамиде Микерина; на этот раз они взяли угол наклона сторон не слишком острый, не слишком тупой.