Чтение онлайн

на главную - закладки

Жанры

Занимательная астрономия
Шрифт:

Еще поразительнее следующее утверждение: изображенный на рис. 2 кружный путь из Японии к Панамскому каналу короче прямой линии, проведенной между ними на той же карте!

Рис. 1. На морской карте кратчайший путь от мыса Доброй Надежды до южной оконечности Австралии обозначается не прямой линией («локсодромией»), а кривой («ортодромией»)

Все это похоже на шутку, а между тем перед вами – бесспорные истины, хорошо известные картографам.

Рис. 2.

Кажется невероятным, что криволинейный путь, соединяющий на морской карте Иокогаму с Панамским каналом, короче прямой линии, проведенной между теми же точками

Для разъяснения вопроса придется сказать несколько слов о картах вообще и о морских в частности. Изображение на бумаге частей земной поверхности – дело непростое даже в принципе, потому что Земля – шар, а известно, что никакую часть шаровой поверхности нельзя развернуть на плоскости без складок и разрывов. Поневоле приходится мириться с неизбежными искажениями на картах. Придумано много способов черчения карт, но все карты не свободны от недостатков: на одних имеются искажения одного рода, на других иного рода, но карт вовсе без искажений нет.

Моряки пользуются картами, начерченными по способу старинного голландского картографа и математика XVI в. Меркатора. Способ этот называется «меркаторской проекцией». Узнать морскую карту легко по ее прямоугольной сетке: меридианы изображены на ней в виде ряда параллельных прямых линий; круги широты – тоже прямыми линиями, перпендикулярными к первым (см. рис. 5).

Вообразите теперь, что требуется найти кратчайший путь от одного океанского порта до другого, лежащего на той же параллели. На океане все пути доступны, и осуществить там путешествие по кратчайшему пути всегда возможно, если знать, как он пролегает. В нашем случае естественно думать, что кратчайший путь идет вдоль той параллели, на которой лежат оба порта: ведь на карте – это прямая линия, а что может быть короче прямого пути! Но мы ошибаемся: путь по параллели вовсе не кратчайший.

В самом деле: на поверхности шара кратчайшее расстояние между двумя точками есть соединяющая их дуга большого круга. [1] Но круг параллели – малый круг. Дуга большого круга менее искривлена, чем дуга любого малого круга, проведенного через те же две точки: большему радиусу отвечает меньшая кривизна. Натяните на глобусе нить между нашими двумя точками (ср. рис. 3); вы убедитесь, что она вовсе не ляжет вдоль параллели. Натянутая нить – бесспорный указатель кратчайшего пути, а если она на глобусе не совпадает с параллелью, то и на морской карте кратчайший путь не обозначается прямой линией: вспомним, что круги параллелей изображаются на такой карте прямыми линиями, всякая же линия, не совпадающая с прямой, есть кривая.

1

Большим кругом на поверхности шара называется всякий круг, центр которого совпадает с центром этого шара. Все остальные круги на шаре называются малыми.

Рис. 3. Простой способ отыскания действительно кратчайшего пути между двумя пунктами: надо на глобусе натянуть нитку между этими пунктами

После сказанного становится понятным, почему кратчайший путь на морской карте изображается не прямой, а кривой линией.

Рассказывают, что при выборе направления для Николаевской (ныне Октябрьской) железной дороги велись нескончаемые споры о том, по какому пути ее проложить.

Конец спорам положило вмешательство царя Николая I, который решил задачу буквально «прямолинейно»: соединил Петербург с Москвой по линейке. Если бы это было сделано на меркаторской карте, получилась бы конфузная неожиданность: вместо прямой дорога вышла бы кривой.

Кто не избегает расчетов, тот несложным вычислением может убедиться, что путь, кажущийся нам на карте кривым, в действительности короче того, который мы готовы считать прямым. Пусть обе наши гавани лежат на 60-й параллели и разделены расстоянием в 60°. (Существуют ли в действительности такие две гавани – для расчета, конечно, безразлично.)

Рис. 4. К вычислению расстояний между точками А и В на шаре по дуге параллели и по дуге большого круга

На рис. 4 точка О – центр земного шара, АВ – дуга круга широты, на котором лежат гавани А и В; в ней 60°. Центр круга широты – в точке С Вообразим, что из центра О земного шара проведена через те же гавани дуга большого круга: ее радиус OB = ОА = R; она пройдет близко к начерченной дуге АВ, но не совпадет с нею.

Вычислим длину каждой дуги. Так как точки А и В лежат на широте 60°, то радиусы ОА и ОВ составляют с ОС (осью земного шара) угол в 30°. В прямоугольном треугольнике АСО катет АС (=r), лежащий против угла в 30°, равен половине гипотенузы АО;

значит, r=R/2 Длина дуги АВ составляет одну шестую длины круга широты, а так как круг этот имеет вдвое меньшую длину, чем большой круг (соответственно вдвое меньшему радиусу), то длина дуги малого круга

Чтобы определить теперь длину дуги большого круга, проведенного между теми же точками (т. е. кратчайшего пути между ними), надо узнать величину угла АОВ. Хорда AS, стягивающая дугу в 60° (малого круга), есть сторона правильного шестиугольника, вписанного го в тот же малый круг; поэтому АВ = r=R/2

Проведя прямую OD, соединяющую центр О земного шара с серединой D хорды АВ, получаем прямоугольный треугольник ODA, где угол D – прямой:

DA= 1/2 AB и OA = R.

Значит,

sinAOD=AD: AO=R/4:R=0,25

Отсюда находим (по таблицам):

AOD=14°28',5

и, следовательно,

AOB = 28°57'.

Теперь уже нетрудно найти искомую длину кратчайшего пути в километрах. Расчет можно упростить, если вспомнить, что длина минуты большого круга земного шара есть морская миля, т. е. около 1,85 км. Следовательно, 28°57' = 1737' 3213 км.

Мы узнаем, что путь по кругу широты, изображенный на морской карте прямой линией, составляет 3333 км, а путь по большому кругу – по кривой на карте – 3213 км, т. е. на 120 км короче.

Поделиться:
Популярные книги

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Не лечи мне мозги, МАГ!

Ордина Ирина
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.00
рейтинг книги
Не лечи мне мозги, МАГ!

У врага за пазухой

Коваленко Марья Сергеевна
5. Оголенные чувства
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
У врага за пазухой

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Жена неверного ректора Полицейской академии

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного ректора Полицейской академии

Отверженный IX: Большой проигрыш

Опсокополос Алексис
9. Отверженный
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Отверженный IX: Большой проигрыш

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита