Чтение онлайн

на главную - закладки

Жанры

Занимательная математика
Шрифт:

Полагаю, ты согласишься, что сравнение вероятностей в уменьшенных взятках более наглядно и поучительно, чем сравнение вероятностей в полных взятках для игры в бридж?

— Не спорю, — согласился Сэм-старший. — Числа получатся другими, но отношение вероятностей для упрощенной игры покажет, каким должен быть ответ в случае полных взяток для игры в бридж.

— Прекрасно! В таком случае ответь, пожалуйста, какие возможные взятки могут оказаться у тебя в упрощенной задаче с непременным тузом пик?

— Проще простого! Вот они:

И

разумеется, вероятность получить взятку с двумя тузами из трех взяток с непременным тузом пик равна 2/3.

— Правильно, — подтвердил Сэм-младший. — А каковы возможные взятки во втором случае, когда требуется, чтобы в колоде непременно был какой-нибудь козырь?

— И в этом случае ответ очень прост:

На этот раз мы получаем пять возможных взяток, а из этих пяти только в одной взятке два туза, что дает вероятность, равную только 1/5. Но почему так?

Сэм-младший рассмеялся и объяснил:

— Вероятность благоприятного исхода по определению равна отношению числа благоприятных исходов к общему числу испытаний. И в первой, и во второй рассмотренной нами задаче в заблуждение вводит общее число возможных испытаний.

В упрощенной задаче ограничение на масть туза (то обстоятельство, что в колоде непременно должен быть туз пик) приводило только к уменьшению общего числа возможных раскладов колоды. Но это условие ничуть не изменило число благоприятных исходов, т. е. благоприятных раскладов взятки, удовлетворяющих условиям задачи. Разумеется, в задаче о «полновесной» взятке, в настоящей, а не упрощенной игре в бридж, числитель дроби, выражающей требуемую вероятность, т. е. число благоприятных исходов, будет ограничен условием непременного присутствия туза определенной масти, но общее число возможных взяток с тузом пик будет ограничено гораздо сильнее. Вероятность в этом случае оказывается больше, чем в случае, когда во взятке непременно должен быть туз какой-то масти.

Вероятность случайного события

— Ты начинаешь убеждать меня, — вздохнул Сэм. — Может быть, нам лучше перейти к бросанию монеты или чему-нибудь в том же духе?

— По правде говоря, я не собирался заходить так далеко, но ты напомнил мне одну интересную историю. Когда я учился на последнем курсе в колледже, нам пришлось прослушать один дурацкий курс, который не дал ровно ничего нашему образованию. Должно быть, этот курс был включен в программу в незапамятные времена, и о нем просто- напросто забыли. Лектор чувствовал себя очень неловко и всячески давал нам понять, что ему очень неловко попусту тратить наше время. В утешение в начале семестра он сообщил нам, что поставит всем только отличные и хорошие оценки, поэтому нам следует беспокоиться не об успеваемости, а только о напрасно потраченном времени.

Лектор был человеком, помешанным на честности, и когда ему в конце семестра пришлось выставлять оценки, не обошлось без небольшой проблемы. Дело в том, что он всем собирался

поставить только хорошие и отличные оценки, распределив их среди студентов случайным образом: каждый, прослушавший курс, мог с вероятностью 1/2 получить оценку «отлично» и с такой же вероятностью — оценку «хорошо».

Наш лектор намеревался пройтись по списку студентов и, останавливаясь на каждой фамилии, бросать монетку: орел означал бы «отлично», а решка — оценку «хорошо». Но прежде чем он приступил к бросанию монеты, его пронзила ужасная мысль: что если монета слегка несимметрична? Ведь тогда вероятности выпадения орла и решки окажутся смещенными, и оценки будут распределяться нечестно!

Проблема, с которой столкнулся наш лектор, состояла в следующем: если монета несимметрична, то можно ли случайным образом распределить оценки среди студентов, прослушавших курс, так, чтобы каждый из них с одинаковой вероятностью мог получить и отличную, и хорошую оценку?

Сэм-старший издал короткий смешок и заметил:

— Я всегда знал, что оценки ставятся наобум, но не думал, что кому-нибудь понадобится исключать эффект возможной асимметрии монеты. Все же, как мне кажется, я знаю, что нужно сделать. Что если лектор станет бросать монету дважды? Разве не верно, что независимо от смещения вероятность выпадения сначала орла, а потом решки в точности равна вероятности выпадения сначала решки, а потом орла?

Сэм-младший тоже рассмеялся:

— Что верно, то верно! А если оба бросания завершатся одинаковыми исходами, то их нужно просто исключить и бросать монетку снова два раза подряд. В зачет идут только те бросания, при которых сначала выпадает орел, а потом решка, или сначала решка, а потом орел. Тогда лектор выставляет оценку «отлично», если первым выпадает орел, и «хорошо», если первой выпадает решка.

— Причина, по которой такая тактика дает правильный результат, очень любопытна, — продолжал Сэм-младший, — и я хотел бы пояснить, в чем тут дело.

Путь

р
— вероятность выпадения орла при первом или втором бросании. Тогда вероятность выпадения решки равна
1 — р
. Следовательно, вероятность выпадения в первом бросании орла, а во втором решки равна произведению
р
и
1 — р
, т. е.
р(1 — р)
.

Точно так же вероятность выпадения при первом бросании решки, а при втором орла равна

(р — 1)р
.

Но так как умножение обыкновенных чисел коммутативно, т. е. произведение не зависит от порядка сомножителей, оба произведения равны:

р(1 — р) = (1 — р)р

Поэтому твой ответ правилен.

Бросание монет

Сэм-старший улыбнулся и сказал:

— Я знал, что когда дело дойдет до денег, я смогу показать тебе, что разбираюсь в своем деле.

— Никогда в этом не сомневался, — заверил отца Сэм-младший. — Я только хотел обратить твое внимание на некоторые тонкости в простейших понятиях теории вероятностей. В том деле, которым ты занимаешься, приходится думать не только о вероятностях, но и о многом другом, например основательно разбираться в теории игр: ведь то, что ты делаешь, по существу сводится к разработке стратегий.

Поделиться:
Популярные книги

Стратегия обмана. Трилогия

Ванина Антонина
Фантастика:
боевая фантастика
5.00
рейтинг книги
Стратегия обмана. Трилогия

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Метаморфозы Катрин

Ром Полина
Фантастика:
фэнтези
8.26
рейтинг книги
Метаморфозы Катрин

Пехотинец Системы

Poul ezh
1. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Пехотинец Системы

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Том 1. Солнце мертвых

Шмелев Иван Сергеевич
1. И. Шмелев. Собрание сочинений в 5 томах
Проза:
классическая проза
6.00
рейтинг книги
Том 1. Солнце мертвых

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

ИФТФ им. Галушкевича. Трилогия

Кьяза
Фантастика:
фэнтези
юмористическая фантастика
5.00
рейтинг книги
ИФТФ им. Галушкевича. Трилогия

Неправильный лекарь. Том 1

Измайлов Сергей
1. Неправильный лекарь
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неправильный лекарь. Том 1

Алые перья стрел

Крапивин Владислав Петрович
Детские:
детские приключения
8.58
рейтинг книги
Алые перья стрел

Сын Тишайшего 2

Яманов Александр
2. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Сын Тишайшего 2