Занимательная радиация. Всё, о чём вы хотели спросить: чем нас пугают, чего мы боимся, чего следует опасаться на самом деле, как снизить риски
Шрифт:
В этом-то и проблема! Медицина в большинстве случаев не способна дать чёткий ответ. Особенно, когда речь идёт о возникновении раковых заболеваний при облучении дозами менее 100 мЗв. Вы спросите: «Почему»? Да потому, что малые дозы радиации действуют на наш организм точно так же, как и многие другие поражающие факторы, например, химические агенты или стрессы. Как сказал бы профессионал: у них общий механизм действия. Возможно, вы о нём слышали. Это образование так называемых свободных радикалов [2].
Сейчас мы подошли к чрезвычайно интересному и
Вообще-то свободные радикалы известны давным-давно. Так называют «неправильные» осколки молекул и атомов. Почему неправильные? Потому что они имеют неспаренный электрон. Трудность понимания сути свободных радикалов возникла оттого, что эти вопросы мы не «проходили» в школе. И привыкли считать, что молекулы могут распадаться лишь двумя способами: на другие молекулы (либо атомы) либо на ионы.
Возьмём, к примеру, молекулу воды (как говаривал Дукалис из «Улиц разбитых фонарей»: «Из всей школьной химии я помню только одну формулу: молекулы воды – аж два: ноль».
Как может распадаться эта молекула?
Во-первых, на газообразный водород и кислород:
2Н2О– > 2Н2 + О2
Второй вариант – диссоциация на ионы:
Н2О– > Н+ + ОН-
Но, оказывается, возможен и третий вариант. В результате необычно мощного воздействия, например, ионизирующего излучения, наша молекула разваливается на два незаряженных осколка:
Н2О– > Н. + ОН.
Вот эти-то осколки (точка обозначает неспаренный электрон) и называют свободными радикалами. Они чрезвычайно неустойчивы, могут существовать лишь доли секунды и всё это время ищут другой атом, чтобы отобрать у него электрон и спарить со своим. Иными словами, эти частицы очень активны, даже агрессивны. Найдя другую частицу, свободные радикалы объединяются. Например, объединиться могут два свободных радикала:
ОН. + ОН.– > Н2О2
Образуется молекула перекиси водорода. Тоже свободный радикал, но более устойчивый, чем исходные.
Свободный радикал может объединиться и с молекулой:
О. + О2– > О3
Образуется озон, который также относится к свободным радикалам; опять же он более устойчив, чем атомарный кислород (О.).
Но хватит уже химии. Вспомнился реальный случай с одной школьницей. Та, сдав на «отлично» выпускной экзамен, спрашивает учительницу:
– Мариванна, а вопрос можно?
– Конечно, Светочка.
– Вы обещаете ответить честно?
– Да, да.
– Мариванна, а вы сами-то верите во все
Но это к слову. Итак, свободные радикалы – не экзотика, мы с ними давно знакомы, взять ту же перекись водорода или озон.
Известно, что свободные радикалы всегда присутствуют в органах и тканях живого организма. Они участвуют во многих реакциях, являются частью нашей защитной системы, регулируют обменные процессы, включая гибель устаревших и изменённых клеток, а также их замену [8].
Но почему в последние десятилетия так возрос интерес к этим самым свободным радикалам? К ним и к их еще более известным «противникам» – антиоксидантам?
Всё началось в 1956 году. Тогда американский ученый Дэнхем Хармен выдвинул сенсационную гипотезу (теперь это признанная теория свободных радикалов). В чём её суть?
Хармен открыл новую, уже негативную роль свободных радикалов в организме. Он предположил, что избыток свободных радикалов является причиной большинства болезней возраста. Точнее, их преждевременного проявления. Рак, сердечно-сосудистые заболевания, болезнь Альцгеймера и даже старость в 60 лет, – и одна из главных причин этого букета – свободные радикалы. Но почему болезни-то разные – у разных людей? А здесь действует принцип: где тонко, там и рвется. Не совсем понятно? Сейчас мы во всем разберёмся.
Давайте сравним две группы людей. В первую включим людей курящих, а также проживающих на экологически- или радиационно-загрязнённых территориях; тех, кто питается неправильно (много жареного, копчёного, жирного, мало витаминов); испытывающих хронические стрессы; старых и пожилых. То есть людей, которые подвергаются воздействию факторов риска, внешних или внутренних (возраст).
А во второй группе соберём людей, которые таким воздействиям не подвергаются. Очевидно, люди из второй группы в среднем окажутся здоровее. Вопрос в другом. Именно этот вопрос задал себе Хармен: «А что общего в организмах людей внутри каждой из групп»? Иначе говоря, чем отличаются люди из первой группы? У них что, температура тела выше? Вряд ли. Давление? Не факт. Состав крови? Уже тепло.
Оказалось, у людей из первой группы всегда повышена концентрация свободных радикалов в клетках – в сравнении с людьми из второй группы. Это вполне объяснимо. Раз человека атакуют повреждающие агенты, организм должен от них защищаться. А если повреждающих факторов много, и на организм они нападают агрессивно, защитные системы будут перенапрягаться. Что приведёт к усиленной работе окислительных систем. Свободные радикалы, образуясь в большом избытке, могут выйти из-под контроля.
А дальше включается механизм цепной реакции. Что это означает? Аналогия: от маленькой зажжённой спички может разгореться большой пожар. То же самое происходит и в случае воздействия радикалов на живую клетку. А роль такой горящей спички может выполнять радиация или другой повреждающий агент [2, 9]. Именно так всё и происходит. Догадка же Хармена заключалась вот в чём: избыток радикалов сам является сильнейшим повреждающим агентом.
Знаете, что ещё это напоминает? Борьбу организма с инфекционными болезнями. От вирусов и бактерий организм защищается, повышая температуру тела. Естественная реакция организма полезна – до поры, до времени. Но температура выше 39 °C, – сама становится опасной для организма. И требуются меры для её снижения.