Чтение онлайн

на главную - закладки

Жанры

Занимательно о космологии
Шрифт:

С портрета смотрят на нас внимательные, иронические и грустные глаза из-под стекол очков. Интеллигент до мозга костей, он с первыми выстрелами 1914 года добровольно пошел воевать. Фридман попал в авиационный отряд, зачисленный туда «нижним чином». Всякая война для солдата означает конец науке гражданской. Но Фридман не просто солдат. «В настоящее время я занимаюсь вопросом об определении температуры и давления, когда заданы скорости… — пишет он с фронта. — Затем собираюсь написать, если вы найдете это удобным, для Географического сборника небольшую заметку о причинах возникновения и исчезновения вихрей в атмосфере, хотя бы в общей

математической форме, — было бы очень интересно».

А вот другое письмо: «В отряде, скуки ради, я немного учусь летать». И немного ниже: «За разведки я представлен к Георгиевскому оружию, но, конечно, получу ли — большой вопрос. Конечно, это как будто мелочность с моей стороны — интересоваться такими делами, как награда, но что поделаешь, так видно уж устроен человек, всегда ему хочется немного „поиграть в жизнь“».

Широта интересов Александра Александровича была поразительна. Он работал в области теоретической метеорологии и электродинамики. В период войны 1914 года получил звание летчика и занялся теорией бомбометания. Написал две основополагающие работы по космологии. И в июле 1925 года совершил вместе с пилотом П. В. Федосеенко рекордный полет на аэростате.

Воспитанник Петербургского университета, он одним из немногих ученых пришел на службу революционному пролетариату Петрограда и до самого конца, до самой смерти — нелепой и случайной, от брюшного тифа в 1925 году — оставался верным своему народу.

Три модели Александра Фридмана

Знаменитые уравнения тяготения Эйнштейна представляют собой систему из десяти дифференциальных уравнений в частных производных. Грубо говоря, они показывают, как распределение масс в пространстве влияет на кривизну этого пространства. Иными словами, они показывают, как метрика пространства зависит от распределения и движения масс и как, в свою очередь, та же метрика определяет движение вещества.

Из-за чисто математических трудностей система уравнений Эйнштейна не поддавалась общему решению. Приходилось идти на различные упрощения.

Те, кто учился и работал рядом с Фридманом, часто вспоминают его любимое присловье: «А нельзя ли здесь чего-нибудь откинуть?» Не с этих ли позиций подошел он к решению уравнений Эйнштейна? Впрочем, он не откидывал лямбда-члена системы Эйнштейна, он просто решал уравнения. Оказалось, что при этом возможно множество решений. Особенно интересен случай при = 0. Решение это настолько интересно, что стоит остановиться на нем поподробнее.

В своей первой работе А. Фридман сохранил все предположения Эйнштейна, за исключением стационарности, и исследовал получившиеся нестационарные однородные изотропные модели с замкнутым пространством постоянной положительной кривизны. При этом ему удалось в отличие от Эйнштейна получить нетривиальные решения уравнений и без космологического члена. Что же представляли собой теоретические модели, полученные петроградским математиком?

Прежде всего они были нестационарны. Радиус кривизны и плотность вещества во вселенной менялись со временем. И от того, какой величины выбрать среднюю плотность, зависела судьба модели мира.

Представим себе = кр: средняя плотность равна некоторому определенному критическому значению. Его можно вычислить по несложной формуле, воспользовавшись значениями некоторых «мировых постоянных».

Но сейчас нам это не нужно. Достаточно, что такое значение существует. При критической плотности вещества пространственная часть четырехмерного мира — плоская. Однако это не неподвижная модель мира Минковского, о которой мы уже говорили. Фридмановское решение делало вселенную подвижной! Все расстояния в пространстве растут, то есть частицы разлетаются в разные стороны со скоростью, которая для малых расстояний пропорциональна приблизительно самому расстоянию.

Если для наглядности отказаться от одного измерения и перейти к двухмерному пространству, меняющемуся во времени, то такую модель можно представить себе в виде равномерно растягиваемой в разные стороны резиновой пленки. Пылинки, налипшие на ее поверхности, будут играть роль звездных систем — галактик.

Посмотрите на наш рисунок. На нем изображен график изменения расстояний в такой модели. Сухая абстрактная кривая на самом деле хранит в себе целый приключенческий роман, только в зашифрованном виде.

Начнем расшифровку с крайней левой точки нашего графика. Она убедительно говорит, что некогда все расстояния между любыми двумя точками во вселенной были пренебрежимо малыми. Не существовало ни пространства, ни времени, ни звезд, ни планет, ни туманностей… Ничего!.. Это область нулевого времени. Потом сработал некий механизм, и стало появляться вещество, частицы его стали разлетаться, начался отсчет времени, стало расширяться пространство — расстояния между любыми двумя частицами вещества стали расти со скоростью, пропорциональной самому расстоянию. Это значит, что далекие частицы разлетаются с большей скоростью, близкие — с меньшей.

Для растягивающейся пленки такое утверждение сомнений не вызывает. Отметьте одну из пылинок на ее поверхности и представьте, что это вы — наблюдатель. Когда поверхность пленки увеличивается, то ближайшая к вам пылинка будет удаляться от вас с какой-то вполне определенной скоростью. Более далекая покажется вам куда более шустрой. Скорость ее будет больше, чем ближайшей, и так далее.

В дальнейшем это решение использовали Эйнштейн и де Ситтер. И потому иногда эту простейшую модель называют именем этих ученых.

Но в статье Фридмана было и более «трагическое» решение. Он предположил, что средняя плотность вещества во вселенной больше критической. Прежде всего это потребовало отказа от эвклидова пространства и перехода к сферическому, риманову трехмерному пространству, да еще с переменным радиусом кривизны.

При этом начало, то есть пресловутый «нуль-пункт», ничем не отличалось от начала предыдущей модели.

Но дальше все шло не так. Радиус неэвклидова сферического пространства, как вы можете видеть из следующего рисунка, не увеличивался бесконечно. В точке Mон достигал максимума, а потом снова уменьшался до нуля. Это означало, что в истории расширяющейся вселенной должен наступить момент, когда «разбегание» прекратится, после чего все пойдет в обратном направлении. Начнется сжатие. И через некоторое время планеты, звезды и галактики снова сольются в единый комок праматерии. Эта модель получила название закрытой.

Поделиться:
Популярные книги

Привет из Загса. Милый, ты не потерял кольцо?

Лисавчук Елена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Привет из Загса. Милый, ты не потерял кольцо?

Диверсант. Дилогия

Корчевский Юрий Григорьевич
Фантастика:
альтернативная история
8.17
рейтинг книги
Диверсант. Дилогия

Четвертый год

Каменистый Артем
3. Пограничная река
Фантастика:
фэнтези
9.22
рейтинг книги
Четвертый год

Неудержимый. Книга XXII

Боярский Андрей
22. Неудержимый
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXII

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Отморозок 2

Поповский Андрей Владимирович
2. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 2

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Орден Багровой бури. Книга 1

Ермоленков Алексей
1. Орден Багровой бури
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Орден Багровой бури. Книга 1

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7