Чтение онлайн

на главную - закладки

Жанры

Занимательно об энергетике
Шрифт:

Примерно в таких тонах расскажет о топливном элементе ученый-электрохимик. Технолог же, обуреваемый желанием сэкономить пространство и материал и жаждущий высоких удельных мощностей, представил бы топливный элемент по-иному.

Это сандвич, сказал бы он, где роль ломтей хлеба играют два пористых (внутренняя поверхность велика, велик и ток) электрода, а кружочка колбасы — пропитанная раствором электролита также пористая матрица (да, хотя б и промокашка, лишь бы тоненькой была!).

Но, добавит технолог, один такой электрохимический «бутерброд» энергией не насытит. Тут уже нужна стопка, этакий «слоеный пирог» из множества топливных элементов.

Толщина отдельного

топливного элемента — миллиметры, снимаемая мощность — сотни ватт. Батарея же высотой в несколько метров (из многих сотен отдельных, повторяющихся, однотипных, правильно чередующихся топливных элементов) способна дать сотни киловатт энергии. Мегаватты же, если заводить речь об электрохимической энергетике всерьез, получатся, коль на сравнительно небольшой площадке взгромоздятся сотни таких слоеных электрохимических «колонн». Это и будет (как бы ее назвать?) электрохимической электростанцией (ЭЭС). Одна из многих ячеек электрохимической энергетики (ЭХЭ).

Важное достоинство этих источников энергии еще и в том, что в основе их построения лежит принцип «модульности». Стопка или набор топливных элементов — модуль — может быть любого размера, а стало быть, и мощности. Так сказать, на любой вкус и потребность!

В каждом доме можно поставить свою котельную, но никак не электростанцию! (Так же, как вряд ли в будущем появятся автомобили с атомным реактором.) Это если говорить о традиционных источниках энергии в городе. Не то ЭЭС. Сейчас создаются проекты небольших (от 25 до 200 киловатт) автономных электрохимических генераторов на природном газе (а он есть в каждой кухне!), которые бы обслуживали отдельные микрорайоны или даже большие жилые дома. При этом можно утилизировать еще и тепло, выделяемое топливными элементами. И при тех же затратах топлива не только снабжать дома электричеством, но и отапливать их.

Но можно строить ЭЭС и больших мощностей — от 5 до 25 мегаватт. Однако работа для них в городе будет уже иная. Ритмы города — «прилив», «отлив». Часы «пик» с толчеей в метро и автобусах. Как громадный зверь, город спит ночью (потребляя мало энергии), но утром, проснувшись, он выказывает всю свою силу (требуя всю доступную ему энергию).

Энергетика города вынуждена работать очень неравномерно и, как сейчас увидим, неэкономично. Эффективность использования топлива на ТЭЦ сильно зависит от нагрузки: если при работах на полную мощность такая ТЭЦ на жидком топливе потребляет около 2150 килокалорий на 1 киловатт-час электроэнергии, то при 40-процентной загрузке — уже 2800 килокалорий. А электрохимический генератор независимо от нагрузки будет потреблять 2270—2330 килокалорий на киловатт-час. (Еще одно замечательное свойство топливных элементов — сколько их мы уже перечислили!)

Нетрудно понять, какие можно получить выгоды, если использовать топливные элементы в коммунальном электроснабжении. В первую очередь как вспомогательные генераторы, подключаемые в часы пиковых нагрузок. Подстраиваясь под прихотливые ритмы городов, очень выгодной окажется комбинация из рассчитанной на средние нагрузки обычной ТЭЦ, постоянно работающей в оптимальном режиме, — на полную мощность, и батареи топливных элементов, принимающей на себя увеличение нагрузки в часы «пик».

Мысль о выравнивании нагрузок в больших энергетических системах: аккумулирование энергии при «спадах» и выдача ее в сеть при «подъемах» — мысль старая. Подсчитано, например, что создание таких аккумулирующих станций общей мощностью от 200 до 400 миллионов мегаватт сэкономило бы в год 50 миллионов тонн нефти!

Как это осуществить? Способов было предложено много. Можно сжимать воздух, хранить его в кавернах,

например, под землей, а затем использовать механическую энергию движущихся воздушных потоков. Другой путь — гидроаккумулирующие устройства: вода закачивается в поднятый высоко резервуар, сброшенная оттуда, она возвращает энергию.

У нас в стране первый такой гидроаккумулирующий комплекс сооружается под Москвой, неподалеку от Загсрска. В двух километрах от устья небольшой речки Куиьи строится водоем, в котором весной будет собираться до 37 миллионов кубометров воды. А на отметке, находящейся на 100 метров выше, располагается другой бассейн почти такой же емкости. В ночное время насосные агрегаты будут из нижнего водоема перекачивать в верхний 22 миллиона кубометров воды. На это и уйдет излишек электричества.

Водохранилища соединены шестью водоводами диаметром 7,5 метра. Днем откроются их затворы, и мощные водопады устремятся к ГАЭС. В московскую городскую систему она передаст 1,2 миллиона киловатт электроэнергии. Столько же, сколько вырабатывается Саратовской ГЭС. А без ГАЭС излишек энергии пока приходится направлять (и получать) в другие отдаленные районы страны. При этом часть электроэнергии теряется в пути.

Проблему выравнивания энергии можно решать и другими способами, но, как правило, у них у всех один общий недостаток — большая инерционность процессов: ими трудно управлять. А электрохимические генераторы лишены этого недостатка. Только вот «маленькая» загвоздка — для выравнивания ритмов городской энергетики необходимы ЭЭС-гиганты: мощностью в десятки мегаватт. А их пока еще нет.

Да, таких электрохимических исполинов пока нет, но когда их начнут монтировать, это будет необычный процесс. Непривычный. ЭЭС можно, оказывается, собирать на специальных заводах. Так же, как, скажем, автомобили. (Автомобиль вовсе не обязательно собирать на дворе того дома, где он будет парковаться!) Строительство ТЭЦ требует места, и немалого, большого времени, капитальных вложений. Массовое же производство электрохимических «бутербродов», их быстрый монтаж в модули и «колонны» можно осуществить поточно. И доставить быстро в любую точку города. Соответственно и стоимость ЭЭС должна быть ниже.

Важность проблемы энергоснабжения городов быстро возрастает. По данным ООН, к концу века в городах будет жить вдвое больше людей, чем сейчас. В развитых странах на долю городов придется три четверти всего населения, в развивающихся странах — около половины. Причем города достигнут грандиозных, умопомрачительных размеров. В 2000 году список их будет, очевидно, возглавлять Мехико с населением 31 (!) миллион человек. Далее будут следовать Сан-Пауло (25,8 миллиона), Токио (24,2 миллиона), Нью-Йорк (22,8 миллиона), Шанхай (22,7 миллиона). Как следствие такой урбаакселерации резко пойдет вверх и необходимость в ЭЭС, этих легко откликающихся на потребу городов новых источников электроэнергии.

«Тарджет» и другие

Кто-то должен начать! Самая блестящая идея останется фантазией, пока за нее не возьмется инженер. И вот в последние годы за рубежом в различных журналах, связанных с энергетикой, техникой, замелькали непривычные, броские заголовки статей. «Использование топливных элементов для выработки электроэнергии — мечта или реальность?» «Топливные элементы — фаворит в энергетической скачке?»... И тому подобное. В условиях достаточно резко выраженного энергетического кризиса, экологических и прочих неурядиц в ведущих капиталистических странах — США, ФРГ, Японии — начаты серьезные исследования вопроса о возможной роли топливных элементов в Большой Энергетике. Особый размах эта деятельность получила в США.

Поделиться:
Популярные книги

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

Миротворец

Астахов Евгений Евгеньевич
12. Сопряжение
Фантастика:
эпическая фантастика
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Миротворец

Семь Нагибов на версту

Машуков Тимур
1. Семь, загибов на версту
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Семь Нагибов на версту

Город драконов

Звездная Елена
1. Город драконов
Фантастика:
фэнтези
6.80
рейтинг книги
Город драконов

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая

Наука и проклятия

Орлова Анна
Фантастика:
детективная фантастика
5.00
рейтинг книги
Наука и проклятия

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Полное собрание сочинений в одной книге

Зощенко Михаил Михайлович
Проза:
классическая проза
русская классическая проза
советская классическая проза
6.25
рейтинг книги
Полное собрание сочинений в одной книге

Блуждающие огни 3

Панченко Андрей Алексеевич
3. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни 3

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3

Город Богов 2

Парсиев Дмитрий
2. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 2

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Начальник милиции. Книга 6

Дамиров Рафаэль
6. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 6