Зеркальные болезни. Рак, диабет, шизофрения, аллергия
Шрифт:
Живое вещество, как правило, жидкий апериодический кристалл. Поэтому должна прослеживаться логика в появлении, а затем и проникновении диссимметрии в более «мягкие» структуры. На схеме мы видим, как рацемат, соединившись с нанокристаллом, имеющим пентагональную ось симметрии, при дегидратации начинает разделять хиральные молекулы, даже не прикладывая к этому никаких усилий. Необходим только перепад температуры. При даже небольшой разнице температур происходит понижение симметрии, т. е. усиление диссимметрии. Этот момент и можно считать спонтанным нарушением симметрии или отправной точкой Жизни. Потом в этот процесс вмешались геометрические силы, и фолдинг полипептидов организовал клетки-домены, которые сначала засосали ДНК и РНК, а потом сконцентрировали их в центре «ядра». Это и была протоклетка-домен, давшая начало Жизни.
Схема диссимметризации рацемата и появление протоклетки-домена.
На нижних этажах работает обычная химия, потом контейнерная, далее процесс подхватывает более информационно насыщенная и более живая энантиометрия сахаров и аминокислот. На всех этажах интеграционными процессами заведует Евклидова геометрия. До этого момента все пока объясняется простой физикой. Постараемся с цифрами в руках доказать, что диссимметрия — физическое явление, лежащее в основе самоорганизации Живого вещества. К примеру, парадокс Левинталя кажется непостижимым и неразрешимым. Однако так дело обстоит до тех пор, пока в дело не вступают законы кристаллических классов! Кубик Рубика имеет 43 252 003 274 489 856 000 различных конфигураций и только одно решение. В настоящее время кубик Рубика собирают за 11 секунд при том, что количество комбинаций не намного меньше, чем у аминокислот. Несколько лет назад в это никто бы не поверил. Надо полагать, что и это не предел. И учтите, что кубик вращается руками, причем детскими, а не некими силами. Тут надо заметить, что дети мыслят больше символами, чем абстрактно. Именно это помогает им мгновенно считывать кубический смысл любой системы. Отсюда вывод: кажущаяся нереальность скорости процесса не означает его невозможности. И другой не менее важный вывод: хиральность выпала не случайно, а в процессе упрощения процедуры
Итак, мы имеем вселенский закон 32 классов симметрии и «выпадающие» из него пятерную симметрию, анизотропию и поляризацию. Именно эти, а не другие факторы явились тем самым механизмом, который развел молекулы по разные стороны баррикад. Жиры, например, обладают слабыми поляризационными свойствами, поэтому они, в основном, играют роль запасного нейтрального питательного материала. Левых Сахаров значительно меньше. Поэтому естественному процессу, обозначенному левой аминокислотной хиральностью, противостоят правые сахара. При раковой патологии происходит колонизация левой части Живой субстанции правыми агрессорами, а именно образование белковых лиганд, тропных к этой части Живой субстанции. Зеркальным болезням свойственно преобладание или правой, или левой части Живой субстанции. Когда эти две части Живой субстанции функционируют гармонично, это здоровье.
Считается, что роль L-сахаров и D-аминокислот в жизни организмов играет вторичную роль. Они образуются у высших животных при сокращении мышц, когда выделяется D-молочная кислота, а при употреблении и переработке глюкозы — смесь D+L. В настоящее время окончательно не установлена истинная роль этих «отверженных». Доказано пока следующее: живые системы, обладая пространственной дисперсностью, имеют большое преимущество. Под пространственной дисперсией следует понимать процесс, объединяющий оптическую активность, гиротропию или нелокальность свойств в системе. Оптическая активность может быть присуща всей молекуле или ее части. Гиротропия же — коллективный эффект. При хаосе большую роль играет только первый фактор. Анализ показывает, что эффект дают молекулы, лишенные не только центра, но и плоскостей симметрии, т. е. хиральные молекулы. У хиральных веществ больше преимуществ в эволюции, это видно уже на примере билатеральности организмов. Билатеральность макроорганизмов — это отражение в них всех свойств решеток ближнего порядка хиральных структур. Система, состоящая из хиральных молекул в замкнутом состоянии, имеет только одно стационарное состояние, соответствующее рацемичному. При обмене со средой у этой системы будут существовать два состояния с преимуществом уже одного изомера, симметричного относительно рацемического. При этом по мере усиления обмена они расходятся все дальше в сторону оптической чистоты. Таким образом, хирально чистые вещества становятся единственно возможным вариантом при обмене со средой. Внутри организма пространственные структуры могут превалировать одна над другой не только по химическим свойствам, но и по геометрическим признакам. Множественные системы, монопептиды, полипептиды, сахара и лиганды в неравновесных системах больше зависят от своей геометрии, геометрии и гиротропии окружающей среды, чем от собственно химических свойств. Энергетическая компонента в неравновесных системах также зависит от геометрии гостевых молекул и состояния среды, где происходит этот процесс. Элементарный расчет показывает, что при переходе от чистого антипода к рацемату получается выигрыш в энергии порядка 4,38 кал/моль, переход же рацемата в оптически чистое хиральное состояние требует примерно 400 кал/моль. Этот энергетический забор с односторонней проходимостью как раз и указывает, в чем причина рака и других зеркальных болезней. Асимметрия исходных молекул влечет за собой асимметрию (изменение конфирмации) следующих звеньев. Вмешательство в подобные структуры искусственных молекул радикально меняет поведение всей системы. Аминокислоты-моно-полипептиды-белки; простые сахара-полисахариды; мононуклеотиды-нуклеотиды-нуклеиновые кислоты. Если система стремится к упорядочиванию, то для сред с пространственной дисперсией возникают коллективные эффекты: эксинонные, поляритонные и солитонные. Известно, что преобладающим типом конфирмации являются правые альфа-спирали. Поэтому в спиральной (т. е. хиральной) альфа-конфирмации вклад экситонных кооперативных эффектов много больше, чем в ахиральной бета-конфирмации. Что лишний раз подтверждает решающую роль стороны закрутки полимеров вправо при развитии раковой болезни. Характерным признаком гиротропии являются геликоноидальные (спирали) структуры. Такие структуры — обычное состояние в хиральных объектах. Спиральность характерна для биологических полимеров, этим свойством обладают жидкие кристаллы и большие полимерные системы, в которых наблюдаются экситоны и солитоны. Логичность хиральности состоит в том, что ее особую роль надо искать не в энергетическом или транспортном плане, а в оптимальном решении вопросов самоорганизации Живого вещества. Известно, что на биологическую упорядоченность энергетические затраты относительно невелики. Поэтому парадокс Левинталя разрешим именно в этом контексте. Природа пошла по пути хирализации с целью уменьшить энергетические затраты и информационные издержки. Именно поэтому мы видим, как, усложняясь и умнея, живые существа стремятся понизить симметрию, а это основной признак диссимметрии. Следовательно диссимметрия — это способ увеличения информационной емкости Живой субстанции. Для однозначности возрастающей информации и получения качественного конечного результата упрощается способ кодирования. Хиральные молекулы хороши, как хранитель и источник информации и объект узнавания. Всем этим требованиям отвечает диссимметрия. Что касается оптической активности простых молекул, они становятся оптически активными только при числе атомов больше трех. Иначе они плоские. Простое деление на D- и L-формы непосредственно пригодно только лишь для молекул с одним хромофором, например, для аминокислот. Потенциальный барьер между D- и L-формами для свободных молекул — симметричен, поэтому переход из одной формы в другую может происходить при повышении температуры. D- и L-мотив очень выражен на макромолекулах белка, где играет большую роль еще и его конфирмация. Поэтому при раке изменение на низшем или среднем молекулярном уровне ведет к грандиозным изменениям в решетках дальнего порядка. При этом даже не важен уровень раскрутки аминокислот. «Раскачка» начала, среднего звена или конечная конфирмация могут зависеть и от «игры» какой-нибудь «петли» в любом месте всей цепи. Взаимодействия D-и L-форм различны. Диффузия D- и L-изомеров в хиральных средах различна. Односторонность биохимических реакций обусловлена хиральной чистотой молекул.
Задающие тон вещества и являются носителями микро- и макромолекулярной информации, инструктирующей поведение систем. Эта же чистота задает прочность полимерным цепям, хорошую экситонность, в два раза уменьшает количество реакций и, следовательно, увеличивает скорость полимеризации в четыре раза, чем при ахиральности. Влияние хирального катализатора, как правило, фермента, определено тем, что с его помощью Природа добилась практически 100 % оптической чистоты молекул. Все другие «агенты» дают несколько процентов. Однако надо помнить, что в биологических системах мелкие флуктуации иногда дают больший ответ, чем в химических реакциях. Катализатор лишь сдвигает скорость реакции, потом включаются другие механизмы, которые поддерживают оптическую чистоту. Если встречаются два антипода, то по сравнению с ферментативными реакциями их взаимодействие будет в 1020 раз ниже. Это относится и к скорости образования полимерных цепей. Такие взаимодействия называют хиродиастальтическими взаимодействиями. Нарушения в этих взаимодействиях и есть причина зеркальных болезней. Именно эти взаимодействия отвечают за узнавание правых и левых молекул. Анализ свойств симметрии показывает, что каждая компонента мультиполя обладает симметрией более высокой, чем скелет хиральной молекулы. Хиральные компоненты могут возникать при наличии в молекуле не менее двух диссимметрично расположенных результирующих полей. Для одних молекул релевантен диполь, для других — квадриполь, для третьих — квадруполь или октаполь. При хаосе влияние хиродиастальтической компоненты пренебрежительно мало. Однако в предельном случае фиксированного расположения и ориентации вклад может быть очень большим. Для больших молекул, где мультиполи разобщены, хиродиастальтические члены могут возрастать в 15—20 раз, что уже вдвое превышает энергию теплового движения. В спиралях этот эффект усиливается. Полярные хиральные молекулы дают значительно больший эффект. Именно поэтому аминокислоты, имеющие большие дипольные моменты, являются стройматериалом для хиральных конструкций. Здесь не грех напомнить, что и молекулы воды также сильно полярны. Поэтому выбор воды и белка, как основы для материализации Жизни, был предопределен и этим моментом. Близкодействующие стерические взаимодействия при подходе и соприкосновении молекул содержат большую диссимметричную компоненту. Вклад хиродиастальтических взаимодействий в различных ситуациях может меняться в широких пределах — на 2—3 порядка. При нахождении рядом ахиральной и хиральной молекул возникает оптическая активность. Индуцирующее действие проявляется и на хиральных молекулах. Например, предохраняя их от рацемизации в хиральном растворителе. Подобные явления
Итак, похоже, все обошлось без высших сил. Левовращение аминокислот и правовращение сахаров для реализации Жизни определено геометрическим и космогоническим факторами, а энергетические и другие явления участвовали во вторую очередь. Слишком высок энергетический барьер, чтобы рацемату преодолеть его. Его «высоту» мы видим между правой и левой половинами тела. Переставить их местами практически невозможно, не разрушив, т. е. не убив, организм. Но этот барьер достаточно легко преодолевается в микромире, например, в нанокристаллах. Правовращающие аминокислоты и левые сахара мало участвуют в реализации этого процесса у многоклеточных только по одной причине — это может вызвать у них асимметрию, т. е. диспропорцию и исчезновение пространственной дисперсии. Нарушится гармония, которая начинается на уровне пространства и его золотого сечения. Геометрия этих «изгоев» не совпадает с энантиомерией пространства, гиротропией стратегически правой Живой субстанции. Левые же аминокислоты обладают достаточным общим свойством для сохранения пространственной дисперсии. Единожды разделившись в определенных условиях, они разделены в Живом веществе почти навсегда. Поэтому вывод один — хиральность надо воспринимать как данность и внимательно изучать средние и верхние этажи Живого вещества. Нет нужды выдумывать всевозможные теории и экзотические гипотезы. Все объясняется простой физикой и кристаллографией. Основной вывод из сказанного — Живая субстанция материализуется там, где возникают условия для диссимметрии и подходящие условия для сохранения органических молекул.
Теперь о зеркальности, которая явно участвовала в процессе дерацемизации Живого вещества и Космоса. Во-первых, диссимметрия является стабилизирующим фактором в регулировании хаоса, возникающего в дисперсных системах и, во-вторых, все в этой реальности изначально зависит от направления закрутки системы и подчинено зеркальной симметрии. Здесь же напрашивается и другой, не менее интересный вывод — существование зеркального абсолютно реального мира, для которого мы являемся виртуальными тенями. Но эти реальности иногда должны соприкасаться, иначе быть не может. Что, собственно, мы и наблюдаем в виде чертовщины и различных непонятных феноменов. Теоретически это выглядит следующим образом. В начале сотворения мира был условный рацемат или мутный кристалл. Вследствие кавитации вся наша система начала двигаться по спирали, как теперь известно, по правой закрутке. Элементарные частицы же внутри этой спирали вращались и продолжают вращаться влево. Потом произошел фазовый переход этого кристалла в другую сингонию и все, что находилось внутри, подверглось кавитационному эффекту. Иначе, неравномерному растягиванию. Этот процесс визуализируется как темная энергия, темная материя, антиматерия, вакуум и видимая материя, высосанная из него. Однако движение вперед предполагает сдвиг всех составных частей системы. Этого требует сама конструкция винта. Вопрос, в какую сторону? Естественно, в правую. И вот здесь на авансцену выходит изначальная зеркальность нашего мира. Если сложить «лопасти» винта вместе, они совместятся, не то, что наши руки. Это достижимо при повороте на 180 градусов или при нарушении зеркальной симметрии. Вследствие этого нехитрого приема наша система становится еще более стабильной и. дублированной. Поэтому то, что мы видим в окружающем мире, — реальность с двойным дном. Пропасть между «видим» и «существует» может быть в миллионы световых лет. Живое на фоне подобных сведений может выглядеть не как что-то из ряда вон выходящее, а как органичное продолжение развития материи и пространства. Причем кристаллическое состояние материи не является последним в этом мире. Оно просто обязано переходить в Живое более подвижное и в тоже время детерминированное состояние. Вот где пригодилось вращение и спирали с геликонами. От стороны закрутки элементов зависит энергия и геометрия всей системы. На разных уровнях организма меняется направление закрутки главных веществ, его составляющих. Чтобы это представить, надо посмотреть на организм издали. Тогда смысл и философия разделения по хиральному признаку становятся ясными. Так изначально организованы Жизнь и Космос, что, по сути, являются одним и тем же. И другой не менее важный вывод: хиральность выпала не случайно, а в процессе упрощения процедуры реализации самоорганизации материи. Природа этим приемом упростила как минимум в два раза свою задачу. Остается загадкой золотое сечение, свойственное только живым организмам. Однако и здесь можно найти объяснение, если его рассматривать с точки зрения оптимальной реализации вхождения Живой субстанции в геометрию неживой природы. Неясным остается только, почему это происходит именно так, а не иначе. Если наша Вселенная кристалл, то кто-то должен играть с ним. Как говорится в Библии: «…и создал Бог человека по образу своему и подобию». Если это правда, то он должен выглядеть как геометрическое тело с пятерной осью симметрии. А диссимметрия в таком случае является инструментом сохранения симметрии в нелинейных процессах формообразования. Следовательно, наше утверждение о нанокристаллическом и зеркальном происхождении Космоса и Живой субстанции, как части этого взаимосвязанного процесса, можно считать не лишенным смысла.
Что же это за явление — диссимметрия Живого вещества, почему ее никто не изучает? Чтобы понять весь трагикомизм ситуации, связанной с диссимметрией, приведем мысли русского ученого В. И. Вернадского. «Переворот, совершающийся в нашем XX веке в физике, ставит в научном мышлении на очередь пересмотр основных биологических представлений. По-видимому, он впервые позволяет в чисто научной концепции мироздания поставить Космос на подобающее место в жизни. Впервые в течение трех столетий вскрывается возможность преодолеть созданное ходом истории мысли глубочайшее противоречие между научно построенным Космосом и человеческой жизнью — между пониманием окружающего нас мира, связанным с человеческим сознанием, и его научным выражением. Это коренное изменение основных физических представлений неизбежно должно отразиться на положении явлений жизни в научном мироздании, ибо целый ряд допущений новой физики нигде не выражен столь резко, как в явлениях жизни. Таков, например, необратимый во времени цикл явлений. Он характеризирует живое в такой степени, в какой мы этого не видим в косной, окружающей нас природе. Необратимость видна отдельного неделимого и для нас ярко выражается в его смерти. Необратимость не менее резко выражена в эволюционном процессе изменения видов в течение геологического времени. Это знали, конечно, давно, но не обращали на это внимания, хотя сознавали его противоречие с утверждением о возможности свести явление к физико-химическим процессам Ньютонова мировоззрения. Это очень обычное проявление неполноты логического анализа в области научного мышления. Оно может быть даже неизбежно при сложности Космоса и при слабости нашего научного аппарата, которым мы проникаем в неизвестное. Явления жизни, явления радиоактивности, явления внутренностей звезд, вероятно, наиболее яркие проявления необратимых процессов в окружающей природе. При этом наиболее резко этот тип процессов выражен в явлениях жизни. И это яркое выражение жизни, несомненно, физического явления космического порядка, не есть случайное или единственное. То же мы увидим в свойствах пространства; оно же может быть отмечено для энергетических процессов, для свойств материи, строящей Живые вещества. Эти отражения жизни в основных понятиях Порядка мира заставляют вводить явления жизни в мироздание новой физики. При этом мы не можем знать, где остановится проникновение научно построяемого Космоса в явления, связанные с жизнью. Вероятно, будущее здесь чревато большими неожиданностями. С точки зрения научной картины мира важно, что изучение жизни указывает на такие черты построения Космоса, которые в иных изучаемых наукой явлениях или совсем не выражаются, или выражены слабо и неясно. Уже одним этим ее изучение меняет научную картину Космоса, без нее построенную, и открывает в ней новые черты. Оно существенно меняет представление о пространстве, о времени, об энергии и о других основных элементах мироздания».
Диссимметрия Живого вещества была открыта в 1848 году одним из величайших ученых прошлого столетия Л. Пастером, который осознал диссимметрию, как космическое явление. Он несколько раз возвращался к этим идеям, углубляя их все более и более, и считал это открытие самым важным делом своей жизни, самым глубоким подходом своего гения к проблемам знания. Странна судьба этих идей. Основная идея, им выдвинутая, не вошла до сих пор в научное сознание. И в общем мнении химиков она даже признается в основе своей сомнительной. Мне кажется, это связано с тем, что понятие диссимметрии, на которое опирался Пастер, никогда не было принято во внимание химиками во всем его объеме и не было понято его современниками. Точно такие же слова можно сказать и сейчас, через много лет. Эта самая главная загадка естествознания как будто нарочно не берется во внимание. Это похоже на какое-то проклятие, но больше всего оно тянет на негласное табу. Глубокий анализ этого понятия был произведен уже после смерти Пастера через 46 лет после его открытия другим гениальным французом Пьером Кюри в 1894 году. Его работы изложены исключительно сжато и могут казаться абстрактными, но основная его теорема — теорема о диссимметрии — не возбуждает никаких сомнений в своей правильности и ясна в своем конкретном значении. Она гласит: «Если какие-нибудь явления проявляют диссимметрию, та же диссимметрия должна существовать в причинах, которые эти явления вызывали». Этот принцип Кюри решает спор бесповоротно в пользу Пастера в той части его утверждений, которые заставляют искать причину диссимметрии природных тел в явлениях жизни.
Судьба работ Кюри схожа с судьбой Пастера. Отвлеченный открытием радиоактивности, он вновь вернулся к работам над симметрией перед смертью в 1906 году — 102 года тому назад, судя по записям в дневнике, — и подошел к крупным обобщениям в этой области. После его гибели — он был раздавлен ломовым на улице Парижа — никто не поднял нити, им упущенной, в дальнейшем физическом анализе принципа симметрии, особенно возбуждающем сейчас наше внимание.
Путь, открытый Пастером и Кюри, зарастает травою забвения. По мысли Вернадского, как раз по нему должна сейчас пойти волна научной работы. Он писал это почти сто лет назад, будучи уверенным в сказанном. Однако, вы думаете, кто-то взялся за разрешение этой загадки? Нет, нет и нет! Были и есть попытки докопаться до сути чисел Фибоначчи, золотого сечения, но диссимметрию до сих пор никто, кроме минералогов, которым она, в общем, ни к чему, не трогает. Факт, установленный Пастером и объясненный Кюри, получил название закона Пастера-Кюри и имеет фундаментальный характер и исключительное значение! Пастер считал, что в живых организмах устойчивы только правые формы материи, т. е. пространство, занятое жизнью, благоприятствует сохранению лишь этих молекулярных структур. Он считал, что в наиболее важном веществе организмов — в семенах и яйцах — резко преобладают правые антиподы. И оказался абсолютно прав, ДНК и РНК — правые формы. Этим он предвосхитил генетику. «Для того чтобы понять образование молекул исключительно одного порядка диссимметрии, достаточно допустить, что в момент своей группировки атомы элементов подвержены диссимметрическому влиянию, а так как все органические молекулы, которые создались при аналогичных условиях, идентичны, каково бы ни было их происхождение и место образования, — это влияние должно быть всемирным. Оно должно охватывать весь земной шар». Этим высказыванием Пастер предположил космичность явления диссимметрии и, надо полагать, был недалек от истины.