Жемчуг
Шрифт:
Состав химических элементов-примесей в жемчуге.Наиболее полно он исследован в жемчуге из водоемов Северо-Запада СССР. По данным Кораго, в состав его входят такие элементы (в %): алюминий (0,008—0,034), барий (0,031—0,083), железо (следы — 0,005), кремний (0,003—0,120), магний (0,016—0,120), марганец (0,004—0,400), медь (0,001—0,003), серебро (0,0001—0,0029), молибден (0,002—0,014), свинец (следы — 0,008), стронций (0,1—0,3), сурьма (0,01), титан (0,001—0,003), натрий (0,1—0,3), олово (0,001).
Наиболее стабильны содержания стронция, титана, натрия. Количество их в коричневых, серых и белых жемчужинах одинаково. Сурьма и олово обнаружены только в одной коричневой жемчужине. Количество других элементов, особенно марганца, магния и кремния, переменчиво. Марганца больше всего в белых жемчужинах, в серых его мало, а в коричневых еще меньше.
Почти одинаковое количество алюминия, бария, железа, меди и молибдена во всех исследованных жемчужинах. Привлекает внимание значительное содержание в белых жемчужинах марганца, в 8 раз превышающее его количество в серых и в 30 раз в коричневых жемчужинах. Такое явление объясняют тем, что марганец преимущественно сорбируется пластинчатыми (перламутровыми) слоями, из которых состоят белые жемчужины, тогда как призматические слои предпочтительнее поглощают серебро.
Анализируя содержание химических элементов в жемчужинах различной окраски, отметим следующее. Коричневые жемчужины обогащены литофильными элементами, а также серебром и свинцом. Большинство серых жемчужин по содержанию в них химических элементов ближе стоят к белым жемчужинам, чем к коричневым. Серые жемчужины (по сравнению с белыми) содержат больше бария, кремния, меди, серебра и молибдена, белые жемчужины — меньше молибдена, серебра и кремния.
Морской жемчуг, извлеченный из раковин черноморской мидии, по сравнению с пресноводным жемчугом содержит вдвое меньше химических элементов. Е. Ф. Шнюков и Д. П. Деменко [1983] обнаружили в двух жемчужинах, добытых в Черном море, такие элементы (в %): магний (1,8—3,8), марганец (<0,0001), медь (0,0001), серебро (0,00001—0,00005), стронций (0,1—0,2), титан (0,0002—0,0005), цирконий (0,001), лантан (0,001—0,002). Последние два элемента найдены только в морских жемчужинах.
Большинство химических элементов, обнаруженных в жемчуге, связаны с процессами жизнедеятельности моллюсков, в частности с их избирательной способностью поглощать эти элементы из воды. Большая часть микроэлементов находится в составе аминокислотной группы гуминовых кислот, входящих в состав органического вещества. Существенную роль в накоплении химических элементов в жемчуге играют обменные процессы, проходящие в клетках «жемчужного» мешка.
Изотопный состав углерода жемчуга. Изотопный состав углерода арагонита жемчуга несет информацию о характере растворов, из которых происходило его отложение в теле моллюска. Количественное соотношение устойчивых изотопов углерода 12С и 13С в карбонатах выражается коэффициентом 13С, означающим в промилле отклонение величины отношения 13С/ 12С вещества относительно такого же отношения в эталоне. В табл. 4 приведены сведения о распределении величины 13С в жемчуге из водоемов Северо-Запада СССР.
Таблица 4. Изотопный состав углерода жемчуга.
Зона жемчужин | 13С, ‰ | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Призматическая | —10,2; —10,8 | —8,7 | —10,5; —9,6 | ||
Пластинчатая | —12,0 | —10,4 | —10,8 | —10,2 | |
Примечание. Жемчужины: 1 — серая: 2—4 — светло-коричневые; 5 — коричневая. |
Изотопный состав углерода жемчуга колеблется по 13С от —8,7 до —12,0‰. Он укладывается в пределы, характерные для 13С углерода пресноводных карбонатов ( 13С = —5:—15,0‰). Из полученных данных можно заключить, что образование жемчуга происходит при участии бикарбонатных растворов с разным изотопным составом углерода. Серая и светло-коричневая жемчужины, состоящие в основном из призматических слоев и тонкой оболочки, сложенной пластинчатыми слоями кристаллов
Изотопный состав кислорода жемчуга.На условия образования жемчуга и на особенности развития моллюсков указывает соотношение в них стабильных изотопов кислорода 16O и 18O. Оно выражается коэффициентом 18O, который, как и в случае с углеродом, означает отклонение величины отношения 18O/ 16O относительно такого же отношения в эталоне. О том, как распределяется величина 18O в жемчуге из водоемов Северо-Запада СССР, свидетельствуют следующие данные:
Характеристика жемчужин | 18O, ‰ |
---|---|
Коричневая призматически-слоистая (оболочка) | —19,4 |
То же (центральная часть) | —18,4 |
Светло-коричневая призматически-слоистая (оболочка) | —8,2 |
То же (центральная часть) | —14,5 |
Перламутр того же моллюска | —14,5 |
Коричневая призматически-слоистая (оболочка) | —20,8 |
Светло-коричневая из украшения, первая половина XIX в. | —14,5 |
То же | —14,4 |
Серая из украшения, I в. до н. э. — I в. н. э. | —14,4 |
Изотопный состав кислорода жемчуга колеблется по 18O от —8,2 до — 20,8‰ и укладывается в пределы, характерные для 18O кислорода пресноводных карбонатов. Среднее значение 18O кислорода исследованных жемчужин — 15,8‰ и несколько выше среднего 18O пресной воды (—9,11‰). Оно очень близко к 18O воды Северной Двины (—15,5‰), тогда как 18O главных жемчугоносных рек Северо-Запада СССР (Кеми, Варзуги, Умбы, Онеги), откуда наиболее вероятно были добыты жемчужины, равно —9,1:—9,7‰ [С. Д. Николаев, В. И. Николаев, 1976]. То есть прямого унаследования изотопного состава кислорода речной воды изотопным составом кислорода жемчуга не происходит. В данном случае следует допустить возможность биологического фракционирования изотопов кислорода, приводящего к обеднению арагонита жемчуга «тяжелым» изотопом кислорода 18O. Важно подчеркнуть, что из растворов наиболее обогащенных этим изотопом ( 18O = —8,2‰). формируется перламутровый слой, придающий ценность жемчужине. Внешний слой призматически-слоистой жемчужины, наоборот, кристаллизуется из раствора с минимальным содержанием 18O ( 18O = —19,4 и —20,8‰) В одном и том же моллюске перламутровый слой жемчуга содержит больше «тяжелого» изотопа ( 18O = —8,2‰), чем перламутровый слой раковины ( 18O = —14,5‰). Переход арагонита в кальцит почти не меняет изотопный состав кислорода исходного карбоната.