Жидкости
Шрифт:
В IX в. персы заливали в лампы оливковое масло. Там прекрасно росли устойчивые к засухе оливковые деревья, плоды которых можно было использовать для производства масла. Примерно из двадцати оливок получалась чайная ложка масла, на которой типичная для того времени масляная лампа могла целый час гореть и давать свет. Так что, если средней семье требовалось пять часов света каждый вечер, она должна была тратить по сто оливок в день – или примерно тридцать шесть тысяч в год на каждую лампу. Чтобы производить достаточно масла для освещения империи, персам нужно было много земли и времени: оливковые деревья, как правило, первые двадцать лет не дают плодов. Кроме того, приходилось защищать свои земли от всякого, кто мог покуситься на этот ценный ресурс, – а значит, нужны организованные города, которые требовали еще больше оливок, чтобы масла хватало всем
Копия древней масляной лампы, использовавшейся во времена ар-Рази
Тем временем масляные лампы развивались. Конструкция IX в. кажется простой, но на самом деле она замечательно хитроумна. Представьте себе чашу с оливковым маслом. Если вы просто попытаетесь поджечь его, то обнаружите, что это сложно. Оливковое масло имеет очень высокую точку возгорания – температуру, при которой оно начинает спонтанно реагировать с кислородом воздуха и вспыхивает. Для оливкового масла она составляет 315°C. Вот почему готовить на нем так безопасно. Если случайно разлить его на кухне, оно не загорится. Кроме того, чтобы зажарить большинство продуктов, достаточно довести их до температуры около 200°C, что всё еще на сто градусов ниже точки возгорания оливкового масла. Поэтому, когда на нем готовишь, масло практически не горит.
Но при температуре 315°C ваш горшок с оливковым маслом ярко вспыхнет, испустив много-много света. Мало того что это невероятно опасно, так и пламя быстро потухнет; оно очень скоро поглотит всё топливо. Возможно, вы подумали: наверняка есть лучший способ жечь оливковое масло для освещения. Вы правы. Если взять кусок веревки и погрузить его в масло, оставив кончик торчать над поверхностью, а затем поджечь, на конце веревки возникнет яркий огонек, а весь горшок нагревать не придется. Горит при этом не веревка, а масло, выступающее на ней. Это весьма изобретательно, но дальше еще лучше. Если оставить веревку гореть, то окажется, что пламя не спускается по ней в масло – наоборот, масло взбирается по ней и вспыхивает только после того, как доберется до самого верха. Такая система способна поддерживать горение часами – ровно до тех пор, пока в чаше есть масло. Всё дело в процессе, который называется капиллярным поднятием и кажется чудесным: масло, оказывается, способно преодолевать тяготение и двигаться независимо. Но на самом деле это базовое свойство жидкостей, возможное потому, что они обладают так называемым поверхностным натяжением.
Способность течь придает жидкостям их структура: это промежуточное состояние между хаосом газов и молекулярной решеткой твердых тел. В газах молекулы обладают достаточной тепловой энергией, чтобы отрываться друг от друга и двигаться независимо. Это придает им динамичность – они расширяются, пока не займут весь свободный объем, – но в них нет почти никакой структуры. В твердых телах сила притяжения между атомами и молекулами намного превышает их тепловую энергию, заставляя их держаться вместе. Поэтому у твердых тел жесткая структура, но малая автономность молекул: когда вы берете со стола чашу, все ее атомы движутся вместе, как единый объект. Жидкости – промежуточное состояние между тем и другим. У атомов в них достаточно тепловой энергии, чтобы разорвать некоторые связи с соседями, но недостаточно, чтобы разорвать их все и стать газом. Они заперты в жидкости, но способны свободно двигаться в ее пределах. Это форма материи, в которой молекулы свободно плавают, образуя и разрывая связи друг с другом.
Среда, в которой существуют молекулы на поверхности жидкости, отличается от той, в которой существуют молекулы внутри ее. Молекулы на поверхности не окружены со всех сторон другими молекулами той же жидкости и поэтому образуют в среднем меньше связей, чем те, что находятся в толще жидкости. Неуравновешенность сил между поверхностью жидкости
Водомерка на поверхности воды. © Alice Rosen
Посмотрите внимательно, как водомерка «ходит» по воде, и вы заметите, что та отталкивает ножки насекомого. Причина в том, что поверхностное натяжение между водой и ножками насекомого порождает силу отталкивания, которая противодействует тяготению. Некоторые виды взаимодействия жидкости и твердого тела имеют противоположный результат: они порождают силу молекулярного притяжения. Это относится, в частности, к воде и стеклу. Если взять в руку стакан с водой, можно увидеть, что ее край у границы со стеклом слегка приподнимается. Он называется мениском, и это тоже результат действия силы поверхностного натяжения.
Растения освоили этот фокус. Они втягивают воду наверх вопреки силе тяготения, из земли в свои тела, при помощи системы крохотных трубочек, которые проходят сквозь их корни, стебли и листья. Когда они становятся микроскопическими, отношение площади внутренней поверхности к объему жидкости увеличивается и описанный эффект усиливается. Потому-то производители продают тряпки для мытья окон из «микрофибры», в которой есть микроканалы, аналогичные микроканалам растений. Они всасывают воду, позволяя тряпке очищать стекло эффективнее. Мы можем вытирать пролитую жидкость с помощью кухонных салфеток благодаря тому же механизму. Всё это примеры капиллярного всасывания (капиллярного поднятия), того самого, что возникает под действием силы поверхностного натяжения и позволяет маслу взбираться вверх по веревке – точнее, по фитилю.
Без капиллярного поднятия свечи не могли бы гореть. Когда вы поджигаете фитилек, жар огня расплавляет вещество вокруг и создает лужицу расплавленного воска. Он поднимается по фитильку через микроканалы к пламени. Так он питает пламя новыми порциями жидкого воска, который и сгорает. Если подобрать для фитиля подходящий материал, пламя будет достаточно горячим, чтобы поддерживать существование лужицы жидкого воска и обеспечивать постоянный приток топлива. Эта обманчиво сложная система саморегулирующаяся и требует так мало внимания и вмешательства, что мы давно уже не воспринимаем свечи как техническое устройство, хотя, строго говоря, именно таковыми они и являются.
Тысячи лет по всему земному шару капиллярное поднятие было главным механизмом внутреннего освещения – и в свечах, и в масляных лампах. Без этих двух устройств мир по ночам погружался в темноту и мрак. Вполне ожидаемо, что лампы были популярны там, где в изобилии имеется какое-либо масло, а свечи – там, где проще было достать воск или животный жир. Однако, несмотря на хитрое устройство, у свечей и масляных ламп были свои недостатки: помимо их пожароопасности, еще и сажа, малая яркость пламени, запах и цена. Поэтому всегда находились люди, которые занимались поиском лучших, более дешевых и безопасных способов внутреннего освещения. Открытие Мухаммадом ар-Рази керосина в IX в. могло бы стать решением проблемы, если бы кто-нибудь до этого додумался.
Предполетный инструктаж по безопасности на борту авиалайнера был в разгаре, и теперь бортпроводники тоже игнорировали значение керосина. До сих пор его ни разу не упомянули, хотя в тот самый момент эту замечательную штуку впрыскивали в реактивные двигатели под крыльями лайнера, чтобы они вывели его на взлетную полосу. А бортпроводники говорили о том, что делать в случае «разгерметизации салона». Я, как англичанин, могу по достоинству оценить, мягко говоря, сдержанность этой фразы. Звучит не особенно впечатляюще, и кажется, что тут нет ничего страшного; на самом же деле, если во время крейсерского полета на большой высоте в обшивке салона внезапно появится дырка или трещина, из него будет быстро высосан воздух вместе со всеми, кто окажется в этот момент не пристегнут к креслу. После этого кислорода в воздухе останется недостаточно для нормального дыхания – отсюда маски, автоматически падающие с потолка. Самолет при этом должен немедленно начать крутой спуск на меньшие высоты, где кислорода в воздухе больше. И тогда каждый, кто доживет до этого момента, бесспорно, будет уже в безопасности.