Чтение онлайн

на главную - закладки

Жанры

Живая математика. Занимательные задачи для любознательных умов
Шрифт:

4-0; 4–1; 4–2; 4–3; 4–5; 4–6.

Итак, каждое число очков повторяется, мы видим, чётное число раз. Ясно, что косточки такого набора можно приставлять одну к другой равными числами очков до исчерпания всего набора. А когда это сделано, когда наши 21 косточка вытянуты в непрерывную цепь, тогда между стыками 0–0, 1–1, 2–2 и т. д. вдвигаем отложенные 7 двойняшек. После этого все 28 косточек домино оказываются вытянутыми, с соблюдением правил игры, в одну цепь.

17. Легко показать, что цепь из 28 костей домино должна кончаться тем же числом очков, каким она начинается. В самом деле:

если бы было не так, то числа очков, оказавшиеся на концах цепи, повторялись бы нечётное число раз (внутри цепи числа очков лежат ведь парами); мы знаем, однако, что в полном наборе костей домино каждое число очков повторяется 8 раз, то есть чётное число раз. Следовательно, сделанное нами допущение о неодинаковом числе очков на концах цепи – неправильно: числа очков должны быть одинаковы. (Рассуждения такого рода, как это, в математике называются «доказательствами от противного».)

Между прочим, из сейчас доказанного свойства цепи вытекает следующее любопытное следствие: цепь из 28 косточек всегда можно сомкнуть концами и получить кольцо. Полный набор костей домино может быть, значит, выложен, с соблюдением правил игры, не только в цепь со свободными концами, но также и в замкнутое кольцо.

Читателя может заинтересовать вопрос: сколькими различными способами выполняется такая цепь или кольцо? Не входя в утомительные подробности расчёта, скажем здесь, что число различных способов составления 28-косточковой цепи (или кольца) огромно: свыше 7 триллионов. Вот точное число:

7 959 229 931 520

(оно представляет собой произведение следующих множителей: 213 · 38 · 5 · 7 · 4231).

Рис. 21

18. Решение этой головоломки вытекает из сейчас сказанного. 28 косточек домино, мы знаем, всегда выкладываются в сомкнутое кольцо; следовательно, если из этого кольца вынуть одну косточку, то

1) остальные 27 косточек составят непрерывную цепь с разомкнутыми концами;

2) концевые числа очков этой цепи будут те, которые имеются на вынутой косточке.

Спрятав одну кость домино, мы можем поэтому заранее сказать, какие числа очков будут на концах цепи, составленной из прочих костей.

19. Сумма очков всех сторон искомого квадрата должна равняться 44 x 4= 176, то есть на 8 больше, чем сумма очков на косточках полного набора домино (168). Происходит это, конечно, оттого, что числа очков, занимающих вершины квадрата, считаются дважды. Сказанным определяется, какова должна быть сумма очков на вершинах квадрата: 8. Это несколько облегчает поиски требуемого расположения, хотя нахождение его всё же довольно хлопотливо. Решение показано на рис. 21.

Рис. 22

Рис. 23

20. Приводим два решения этой задачи из числа многих возможных. В первом решении (рис. 22) имеем:

1 квадрат с суммой 3

2

квадрата с суммой 9

1 квадрат с суммой 6

1 квадрат с суммой 10

1 квадрат с суммой 8

1 квадрат с суммой 16

Рис. 24

Во втором решении (рис. 23):

2 квадрата с суммой 4

2 квадрата с суммой 10

1 квадрат с суммой 8

2 квадрата с суммой 12

21. На рис. 24 дан образчик магического квадрата с суммой очков в ряду 18.

22. Вот в виде примера две прогрессии с разностью 2:

a) 0–0; 0–2; 0–4; 0–6; 4–4 (или 3–5); 5–5 (или 4–6);

b) 0–1; 0–3 (или 1–2); 0–5 (или 2–3); 1–6 (или 3–4); 3–6 (или 4–5); 5–6.

Всех шестикосточковых прогрессий можно составить

23. Начальные косточки их следующие:

а) для прогрессий с разностью 1:

b) для прогрессий с разностью 2:

0—0; 0–2; 0–1.

23. Расположение задачи может быть получено из начального положения следующими 44 ходами:

24. Расположение задачи достигается следующими 39 ходами:

25. Магический квадрат с суммой 30 получается после ряда ходов:

Занимаясь головоломками, относящимися к домино и к игре 15, мы оставались в пределах арифметики. Переходя к головоломкам на крокетной площадке, мы вступаем отчасти в область геометрии.

26. Даже опытный игрок скажет, вероятно, что при указанных условиях пройти ворота легче, чем крокировать: ведь ворота вдвое шире шара. Однако такое представление ошибочно: ворота, конечно, шире, нежели шар, но свободный проход для шара через ворота вдвое уже, чем мишень для крокировки.

Взгляните на рис. 25, и сказанное станет вам ясно. Центр шара не должен приближаться к проволоке ворот меньше чем на величину радиуса, иначе шар заденет проволоку. Значит, для центра шара останется мишень на два радиуса меньше ширины ворот. Легко видеть, что в условиях нашей задачи ширина мишени при прохождении ворот с наилучшей позиции равна диаметру шара.

Рис. 25

Рис. 26

Поделиться:
Популярные книги

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV