Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Экспериментаторы искали и нашли. Вначале лишь несколько кристаллов, а затем множество. Об одной из таких находок я и хочу рассказать.

Изучались кристаллы сильвина (КСl), в которых при высокой температуре был растворен барий. Во время остывания из раствора выпадали выделения хлористого бария ВаСl2 . Эти выделения, имеющие форму тонких пластинок, располагались строго упорядоченно, образуя правильно ориентированные строчки, состоящие из многих закономерно ориентированных выделений.

Явление, которому посвящен очерк, активно

изучается. Кристаллофизики надеются на то, что, быть может, пользуясь этим явлением, управляя ориентацией «строчек» и плотностью расположенных в них выделений, удастся создать кристаллы с необычными физическими свойствами. Быть может! Такая надежда — вполне достаточное основание для совместных усилий и экспериментаторов, и теоретиков.

КРИСТАЛЛ ПОД ЛАЗЕРНЫМ ЛУЧОМ

В этом очерке — рассказ о принудительном поселении дефектов в кристалле, который облучается световым потоком.

Речь будет идти о кристалле с макроскопическими включениями, которые оказались в нем случайно или были введены преднамеренно. Это совсем не экзотический объект — кристаллами с включениями заполнены недра Земли. Пожалуй, большей экзотикой является кристалл без включений, особенно если имеются в виду естественные кристаллы, а не выращенные искусственно с соблюдением множества предосторожностей. Предполагаем, что кристалл прозрачен для лазерного луча и, распространяясь в кристалле, луч может достичь включения, почти не ослабев по дороге.

Вот теперь можно кое-что рассказать о том, как включения в кристалле могут повлиять на его «оптическую прочность», т. е. на ту минимальную интенсивность лазерного луча, которой оказывается достаточно для того, чтобы, поглощая энергию луча, кристалл разрушился.

Два коротеньких рассказа о двух механизмах этого влияния.

Вначале о простейшем механизме. Назовем его первым. Представим себе, что в оптически прозрачном кристалле имеется включение, полностью поглощающее свет. Скажем, металлический шарик в монокристалле каменной соли. Допустим, что кристалл импульсно, в течение времени , освещается световым пучком, интенсивность которого I0. Время измеряется в секундах, а интенсивность — в эрг/(мм2•с). Шарик, радиус которого R, за время вспышки поглотит энергию

W = R2I0.

Эта энергия может оказаться совсем не малой. Поглотив ее, шарик может не только заметно нагреться, но и расплавиться и даже вскипеть. Если масса шарика

m =4/3. R3d

(d — плотность), а С — его теплоемкость,

то он нагреется на Т = W/Ст I0/RСd .

Любопытную закономерность предсказывает формула, в знаменателе которой стоит радиус шарика: чем меньше шарик, тем до более высокой температуры он будет нагреваться, тем ранее расплавится и ранее вскипит, тем он опаснее для кристалла. Маленький

опаснее большого! Воспользуемся формулой и убедимся, что даже под влиянием импульса совсем маломощного лазера (I0 4•1010 эрг/(мм2•с), 10– 3 с) медный шарик, радиус которого R 10– 4 см (d = 8,9 г/см3, а С = 4•102 эрг/(г•°С)), нагреется до температуры Т 106 °С. Оказывается, что он вскипит, превратится в пар под давлением, которое может достичь десятков тысяч атмосфер — величины вполне достаточной, чтобы разрушить кристалл вблизи шарика. Впрочем, для того чтобы кристалл разрушился или заметно деформировался, достаточно нагрева в десятки раз меньшего. Медный шарик при этом даже не расплавится, а просто, вследствие теплового расширения, его радиус возрастет. Как показывает расчет, в кристалле-матрице вблизи шарика это вызовет напряжения 1011 дин/см2, что предостаточно для того, чтобы в кристалле вокруг шарика появились значительные напряжения и очаги разрушения.

Теперь о втором механизме. Как и в первом механизме, главенствующую роль играет наличие включения, поглощающего свет. Оно нагревается и создает вокруг себя поле напряжений, величина которых постепенно уменьшается по мере удаления от включения источника напряжений. В однородном ненапряженном кристалле лучи света распространяются прямолинейно. Это — аксиома! А попадая в область, где от точки к точке напряжения меняют величину, луч изгибается. В симметричном поле напряжений вокруг шарика омывающие его лучи могут, изогнувшись, пересечься за ним. И здесь вступает в действие усиление интенсивности за счет взаимного пересечения лучей, рожденных общим источником — лазером.

Напряженная область вокруг шарика играет роль, подобную роли фокусирующей линзы, которая собирает лучи в фокусе. Даже при слабой интенсивности света, падающего на линзу, интенсивность в фокусе может оказаться огромной. Скажем так: опасной. В тени разогретого шарика она тоже может оказаться опасной для кристалла, вызвать в нем локальные разрушения.

Экспериментально этот механизм появления очагов разрушения в кристалле с поглощающими включениями наблюдается отчетливо: поглощающее включение, а за ним — очаг трещин.

АТОМНЫЙ ВЗРЫВ В КРИСТАЛЛЕ

Речь будет идти не о кристалле, попавшем в зону атомного взрыва и обезображенного взрывной волной. Имеются в виду совершенно будничные, мирные условия, при которых кристалл сохраняет все отчетливо видимые добродетели: и совершенство формы, и прозрачность. Между тем не вне кристалла, а в нем происходят атомные взрывы: систематически, всегда, планомерно. Происходят и оставляют последствия.

Очерк начат интригующей загадкой, в которой, однако, нет и тени надуманности. Имеется в виду абсолютно реальная ситуация. Практически в любом естественном минерале есть малая, гомеопатическая примесь урана. Некоторые из изотопов урана, как известно, самопроизвольно распадаются. Это значит, что ядро делится (взрывается!), выделяя при этом значительную энергию. Этакая бомба, состоящая из одного атома! Такой взрыв чрезвычайно редко, но происходит самопроизвольно, и после него в кристалле остается (поселяется!) протяженная дефектная область, именуемая «трек». Этому виду дефекта и посвящен очерк.

Поделиться:
Популярные книги

Эпоха Опустошителя. Том IV

Павлов Вел
4. Вечное Ристалище
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Эпоха Опустошителя. Том IV

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Опасная любовь командора

Муратова Ульяна
1. Проклятые луной
Фантастика:
фэнтези
5.00
рейтинг книги
Опасная любовь командора

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Хозяйка старой пасеки

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
7.50
рейтинг книги
Хозяйка старой пасеки

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Низший 2

Михайлов Дем Алексеевич
2. Низший!
Фантастика:
боевая фантастика
7.07
рейтинг книги
Низший 2