Жизнь и мечта
Шрифт:
В результате своих опытов Гальвани пришел к ложному выводу, что источникам электричества в этом случае является живая ткань лягушки. На этом основании он создал теорию «животного электричества».
Теперь-то мы знаем, что в биологических тканях действительно протекают электрические процессы. Но в упомянутых опытах Гальвани речь шла совсем не об этом, не о тонких электрических процессах, протекающих в живой ткани, а о возникновении электричества при простом прикосновении разнородными металлами к препарированной (мертвой) лягушке.
Созданная Гальвани теория
В своих мемуарах Вольта пишет, что он повторил опыты Гальвани и получил тот же самый результат, но пришел к заключению, что электричество содержится не в живой ткани, а в тех разнородных металлах, которыми Гальвани прикасался к препарированной лягушке.
Вольта установил, что электродами в опытах Гальвани служили медь и железо, а мышцы лягушки (вернее , их лимфа) [7] служили лишь промежуточной средой — электролитом. Поняв это, Вольта сумел сделать первый искусственный источник электрического тока — вольтов столб, собранный из последовательно соединенных одинаковых элементов, из которых каждый состоял из чередующихся медных и цинковых кружочков, проложенных суконными прокладками, смоченными в растворе кислоты или щелочи.
156
В память о заслугах того, кто первым наблюдал появление электрического тока между двумя металлами, соединенными жидкостью, Вольта назвал свои элементы гальваническими. Мы и сейчас пользуемся этим названием.
Изучая историю развития учения об электричестве, можно убедиться, что новая трактовка опытов Гальвани не без препятствий сменила старую, уже признанную.
Сам Гальвани резко выступал против «металлической», как он называл, теории электричества, созданной Вольта. Дело доходило даже до взаимных оскорблений и анонимных писем с угрозами. Такова была сила инерции уже принятого однажды понятия.
Победил, как мы знаем, Вольта. Он одержал победу потому, что его теория была более прогрессивной, хотя и не совсем точной с точки зрения современных представлений.
Теория «животного электричества» Гальвани не привела, как известно, ни к каким практическим результатам, а теория Вольта, позволила создать искусственные источники электрического тока и тем самым помогла сделать огромный шаг вперед по пути изучения электрических процессов. Теперь можно без преувеличения сказать, что, не будь в свое время созданы гальванические элементы, мы не имели бы столь развитой электротехники.
Во всей этой истории поучительно то, что два ученых, и не рядовых, а оставивших глубокий след своей деятельности и в других областях исследований, произвели один и тот же опыт, получили одни и те же результаты (т. е. один и тот же факт), но выводы из этих опытов они сделали совершенно различные. Теория первого была бесплодной и, как мы знаем теперь, неправильной, а теория второго стояла ближе к
157
СМЕЛЫЕ ОПЫТЫ А. С. ПОПОВА
Единственный ли это случай, когда ученые, исследователи приходили к ложным выводам на основе собственных опытов? Нет, не единственный. Таких примеров много.
Вот случай, который ближе всего к нашей современности. Выдающийся немецкий физик Генрих Герц, изучая творческое наследие великого Фарадея и Максвелла, пришел к мысли о возможности экспериментально подтвердить существование электромагнитных волн, природа которых вытекала из общей теории распространения электромагнитного поля, созданной Максвеллом в 1863 г.
Герц первым построил в 1888 г. генератор электромагнитных волн в виде элементарного вибратора, который до сих пор носит это название, и первый осуществил простейший способ приема этих волн. Он первым поставил опыты по передаче электромагнитных волн без проводов и изучил их преломление и отражение от различных твердых предметов. Однажды, после публичной демонстрации действия на расстоянии генерированных электромагнитных волн на приемный индикатор, кто-то спросил:
— Скажите, пожалуйста, господин Герц, какое значение может иметь ваше открытие для человечества, для последующего развития техники?
Он подумал немного и ответил:
— По-моему, никакого. Слишком малы те расстояния, на которые можно передавать электромагнитные волны. (Опыты проводились в пределах одной аудитории.)
Теперь все знают, что история убедительно опровергла эти слова знаменитого ученого. Прошло всего несколько лет, как другой пытливый человек — преподаватель физики минного офицерского класса Кронштадтского военно-морского училища Александр Степанович Попов, демонстрируя своим слушателям тот же самый опыт Генриха Герца по передаче электромагнитных волн на расстоянии, пришел к совершенно другому выводу.
Глубже задумываясь над природой электромагнитных волн, анализируя возможное применение этого явления, он пришел к твердому убеждению, что электромагнитные волны могут быть надежной основой для осуществления беспроволочной связи. Эту мысль он со всей ясностью высказал в 1889 г.
158
Он деятельно изыскивал и разрабатывал способы увеличения дальности действия генератора электромагнитных волн и вскоре создал антенну, без которой в наше время не обходится ни одно радиотехническое устройство связи. Потом он усовершенствовал когерер — первое устройство для приема радиоволн, основанное на свойстве металлических порошков повышать свою электропроводность под влиянием высокочастотных электрических колебаний. В 1895 г. А. С. Попов настолько усовершенствовал это устройство, что оно стало автоматически возвращаться в рабочее положение после каждого приема радиосигнала.