Чтение онлайн

на главную - закладки

Жанры

Жизнь науки

Капица С. П.

Шрифт:

Быть может, еще большее значение, чем собственные перворазрядные творческие достижения Гильберта, имело влияние стиля его мышления, те требования ясности и определенности результатов, которые он ставил, то сочетание простоты и строгости, которых он добивался от своих учеников.

Гильберт возглавил обширную школу, оказавшую сильное влияние на всю мате* матику и физику начала XX века. После прихода к власти Гитлера «чистка» германских университетов больше всего коснулась учеников Гильберта. Вейль и Курант покинули родину, другие потеряли свое место, некоторые погибли в концлагерях. Последние годы жизни для Гильберта были трагическими годами одиночества; на его глазах разрушалась германская культура, блестящим представителем которой он был. Гильберт умер в Геттингене на 81-м году жизни; на его могиле

написано:

Wir miissen wissen

Wir werden wissen

(мы должны знатьмы будем знать).

приводим вступительную часть речи Гильберта на II Международном съезде математиков в Париже в 1900 г. В этой знаменитой речи Гильберт сформулировал 23 проблемы. Последующее развитие математики показало всю глубину его интуицпп и понимания путей развития математики. Мы приводим также предисловие к «Основаниям геометрии» (1930), первоначально вышедшим в 1899 г.

МАТЕМАТИЧЕСКИЕ ПРОБЛЕМЫ

Кто из нас не хотел бы приоткрыть завесу, за которой скрыто наше будущее, чтобы хоть одним взглядом проникнуть в предстоящие успехи нашего знания и тайны его развития в ближайшие столетия? Каковы будут те особые цели, которые поставят себе ведущие математические умы ближайшего поколения? Какие новые методы и новые факты будут открыты в новом столетии на широком и богатом поле математической мысли?

История учит, что развитие науки протекает непрерывно. Мы знаем, что каждый век имеет свои проблемы, которые последующая эпоха или .решает, или отодвигает в сторону как бесплодные, чтобы заменить их новыми. Чтобы представить себе возможный характер развития математического знания в ближайшем будущем, мы должны перебрать в нашем воображении вопросы, которые еще остаются открытыми, обозреть проблемы, которые ставит современная наука и решения которых мы ждем от будущего. Такой обзор проблем кажется мне сегодня, на рубеже нового столетия, особенно своевременным. Ведь большие даты не только заставляют нас оглянуться на прошедшее, но и направляют нашу мысль в неизвестное будущее.

Невозможно отрицать глубокое значение, какое имеют определенные проблемы для продвижения математической науки вообще, и важную роль, которую они играют в работе отдельного исследователя. Всякая научная область жизнеспособна, пока в ней избыток новых проблем. Недостаток новых проблем означает отмирание или прекращение самостоятельного развития. Как вообще каждое человеческое начинание связано с той или иной целью, так и математическое творчество связано с постановкой проблемы. Сила исследователя познается в решении проблем: он находит новые методы, новые точки зрения, он открывает более широкие и свободные горизонты.

Трудно, а часто и невозможно заранее правильно оценить значение отдельной задачи; ведь в конечном счете ее ценность определится пользой, которую она принесет науке. Отсюда возникает вопрос: существуют ли общие признаки, которые характеризуют хорошую матемдтическую проблему? ^

Один старый французский математик сказал: «Математическую теорию можно считать совершенной только тогда, когда ты сделал ее настолько ясной, что берешься изложить ее содержание первому встречному». Это требование ясности и легкой доступности, которое здесь так резко ставится в отношении математической теории, я бы поставил еще резче в отношении математической проблемы, если она претендует на. совершенство; ведь ясность и легкая доступность нас привлекают, а усложненность и запутанность отпугивают.

Математическая проблема, далее, должна быть настолько трудно#,* чтобы нас привлекать, и в то же время не совсем недоступной, чтобы не делать безнадежными наши усилия; она должна быть путеводным знаком на запутанных тропах, ведущих к сокрытым истинам; и она' затем должна награждать нас радостью найденного решения.

Математики прошлого столетия со страстным рвением отдавались решению отдельных трудных задач; они знали цену трудной задаче. Я напомню только поставленную Иоганном Бернулли задачу о линии быстрейшего падения. «Как показывает опыт,— говорит Бернулли, оповещая о своей задаче,— ничто с такой силой не

побуждает высокие умы к работе над обогащением знания, как постановка трудной и в то же время по-' лезной задачи». И поэтому он надеется заслужить благодарность математического мира, если он,— следуя примеру таких мужей, как Мерсенн, Паскаль, Ферма, Вивиаии и другие, которые (до него) поступали так' же,— предложит задачу выдающимся аналитикам своего времени, чтобы они могли на ней, как на пробном камне, испытать достоинства своих методов и измерить свои силы. Этой задаче Бернулли и другим аналогичным задачам обязано своим зарождением вариационное исчисление.

Известно утверждение Ферма о том, что диофантово уравнение

хп + уп = zn

неразрешимо в целых числах х, у, z, если не считать известных очевидных исключений. Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побужденный задачей Ферма, Куммер пришел к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители — теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером, является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций.

Напомню еще об одной интересной проблеме — задаче трех тел. То обстоятельство, что Пуанкаре предпринял новое рассмотрение и значительно продвинул эту трудную задачу, привело к плодотворным методам и далеко идущим принципам, введенным этим ученым в небесную механику, методам и принципам, которые сейчас признаются и применяются также и в практической астрономии.

Обе упомянутые проблемы — проблема Ферма и проблема трех тел — являются в нашем запасе проблем как бы противоположными полюсами: первая представляет свободное движение чистого разума, принадлежащее области абстрактной теории чпсел, вторая выдвинута астрономией и необходима для познания простейших основных явлений природы.

Однако часто случается, что одна и та же специальная проблема появляется в весьма различных областях математики. Так, проблема о кратчайшей линии играет важную историческую и принципиальную роль одновременно в основаниях геометрии, теории кривых и поверхностей, механике и вариационном исчислении. А как убедительно демонстрирует Ф. Клейн в свсхей книге об икосаэдре, проблема о правильных многогранниках имеет важное значение одновременно для элементарной геометрии, теории групп, теории алгебраических и теории линейных дифференциальных уравнений!

Чтобы осветить важность отдельных проблем, я позволю себе еще сослаться на Вейерштрасса, считавшего большой удачей для себя то стечение обстоятельств, которое позволило ему в начале своей научной деятельности заняться такой значительной проблемой, как проблема Якоби об обращении эллиптического интеграла.

После того как мы рассмотрели общее значение проблемы в математике, обратимся к вопросу о том, из какого источника математика черпает свои проблемы. Несомненно, что первые и самые старые проблемы каждой математической области знания возникли из опыта и поставлены над миром внешних явлении. Даже иршикп счета с целыми числами были открыты на этом пути еще на ранней ступени культурного развития человечества так же, как и теперь ребенок познает применение этих правил эмпирическим методом. То же относится к первым проблемам геометрии — пришедшим к нам из древности задачам удвоения куба, квадратуры круга, а также к старейшим проблемам теории численных уравнений, теории кривых, дифференциального и интегрального исчислений, вариационного исчисления, теории рядов Фурье и теории потенциала, но говоря уже о всем богатстве проблем собственно механики, астрономии и физики.

Поделиться:
Популярные книги

Хозяйка старой пасеки

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
7.50
рейтинг книги
Хозяйка старой пасеки

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Хозяин Теней 4

Петров Максим Николаевич
4. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней 4

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Потомок бога

Решетов Евгений Валерьевич
1. Локки
Фантастика:
попаданцы
альтернативная история
аниме
сказочная фантастика
5.00
рейтинг книги
Потомок бога

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Надуй щеки! Том 7

Вишневский Сергей Викторович
7. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 7

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия