Чтение онлайн

на главную - закладки

Жанры

Журнал «Компьютерра» №25-26 от 12 июля 2005 года
Шрифт:

Здесь мы вплотную подходим еще к одной глубокой взаимосвязи термодинамики и динамики вычислений. По существу, понятие термодинамического цикла оказывается приложимо к описанию процесса вычисления, происходящему в неравновесной физической системе.

И что дальше?

–  Это трудный вопрос, возможно, с неожиданным ответом. Грандиозные успехи полупроводниковой вычислительной техники неоспоримы. Существует ли потребность в устройствах обработки данных, построенных на принципиально иных принципах? Способны ли они конкурировать с электронными вычислителями?

Варианты ответов

на эти вопросы могут показаться несколько странными: да, эти устройства по многим параметрам могут конкурировать с электроникой, но потребность в них сегодня определяется не их техническими характеристиками.

Фундаментальное значение имеет сама возможность целенаправленного создания неравновесных диссипативных структур, обладающих свойствами, присущими живым объектам, - способностью к самоорганизации и усложнению своей структуры в условиях потребления энергии и информации из окружающей среды. По существу, речь может идти о программе создания искусственных живых объектов, по крайней мере в термодинамическом и информационном смыслах.

Вычислительные возможности физических систем

Сет Ллойд (Seth Lloyd) - профессор квантовомеханических технологий Массачусетского технологического института и создатель первого в мире квантового компьютера, дал оценку предельных вычислительных параметров физических систем[Seth Lloyd, Ultimate physical limits to computations//Nature, V. 406, August, 31, 2000.] (см. также www.arxiv.org/abs/quant-ph/0110141

«обычный» современный компьютер - количество преобразований в секунду 109, объем хранимой информации 1012 бит;

так называемый предельный компьютер, в качестве которого рассматривается материя массой 1 кг в объеме 1 л (то есть имеющая плотность воды), - количество преобразований в секунду 1051, объем хранимой информации 1031 бит;

черная дыра, представляющая собой результат гравитационного коллапса вещества массой 1 кг и имеющая радиус 10-27 м, обладает способностью выполнять 1035 элементарных преобразований в секунду, храня при этом 1016 бит информации;

вся наша Вселенная. В расчет принимается лишь вещество, содержащееся в пределах наблюдаемых границ нашего Мира.

Вселенная-компьютер обладает быстродействием 10106 операций в секунду при объеме хранимой информации 1092 бит.

Следует помнить, что эти оценки характеризуют лишь «способность» тех или иных физических систем обрабатывать информацию, но не дают никаких указаний на то, как технически организовать эти процессы и осуществлять ввод и вывод данных.

Так, например, некоторый объем низкотемпературной плазмы, полученной при помощи СВЧ-разряда, можно рассматривать в качестве «действующей модели» «предельного компьютера», однако никто сегодня не может сказать, каким образом эту плазму можно запрограммировать на реализацию, например, алгоритма игры в шахматы.

Информация из холодильника

В 1925

году Альберт Эйнштейн, математически исследовав поведение охлаждаемого вещества, подтвердил гипотезу гениального индуса Шатьендраната Бозе о том, что в состоянии глубокого охлаждения механическое движение частиц вещества прекращается, а отдельные атомы (или молекулы), потеряв связанную с тепловым движением информацию, становятся квантово неразличимыми, «размазанными» по всему занимаемому веществом объему.

Такое состояние материи, образованной делокализованными, когерентными (то есть находящимися в одинаковом квантовом состоянии) частицами, получило название конденсата Бозе-Эйнштейна. В эксперименте с двумя тысячами атомов рубидия, охлажденными в магнитной ловушке до 20 нанокельвинов, это состояние удалось получить лишь в 1995 году практически одновременно двум исследователям - Эрику Корнеллу (Eric Сornell, Национальный институт стандартов США) и Карлу Виману (Karl Wieman, Колорадский университет). Позднее Вольфганг Кеттерле (Wolfgang Ketterle) сумел превратить в конденсат сто тысяч атомов натрия.

Очень впечатляюще выглядят эксперименты, приводящие к возникновению макроскопических, но по сути - квантовых форм движения вещества. Например, в 1996 году физикам Массачусетского технологического института удалось создать «атомный лазер» - «струю» бозе-эйнштейновского конденсата, представляющую собой поток делокализованных атомов. Квантовые свойства такого пучка позволяют фокусировать его «в пятно» практически атомных размеров, что открывает возможность использования этого эффекта в литографии ультравысокого разрешения.

Достигнутые результаты показали, что для управления поведением большого (макроскопического) образования, каким является конденсат, к нему требуется подвести ровно столько информации, сколько понадобилось бы для управления одной микрочастицей. Таким образом, для непосредственного управления механическим движением вещества в состоянии бозе-эйнштейновской конденсации, можно применять такие чисто информационные операции, как пространственная фильтрация, коррекция волновых фронтов и т. п.

Конденсат обладает свойствами квантового процессора: сформировав некоторым образом исходное состояние конденсата, мы можем воздействовать на него так, чтобы заставить эволюционировать всю систему в некое конечное, результирующее состояние, измерение которого и даст результат квантового вычисления.

Суперкомпьютер «Black Hole»[Black hole - черная дыра (англ.)]

Анализом информационных характеристик физических процессов, протекающих в окрестности черных дыр, в 70-х годах прошлого столетия активно занялся Стивен Хокинг (Stephen Hawking, Кембриджский университет). В частности, он и Якоб Бекенштайн (Jacob Bekenstein, Еврейский университет в Иерусалиме) смогли показать, что черная дыра массой 1 кг способна хранить примерно 1016 бит информации в объеме сферы радиусом 10-27 м.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Мой личный враг

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.07
рейтинг книги
Мой личный враг

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Аргумент барона Бронина 4

Ковальчук Олег Валентинович
4. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 4

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Игра на чужом поле

Иванов Дмитрий
14. Девяностые
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Игра на чужом поле

Мужчина не моей мечты

Ардова Алиса
1. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.30
рейтинг книги
Мужчина не моей мечты

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!