Журнал «Вокруг Света» №02 за 2008 год
Шрифт:
Но даже успей спасатели вовремя, то после прибытия на место на вертолетах или транспортном самолете они, в лучшем случае, сумеют развернуть в районе бедствия полевой госпиталь, в котором все равно не будет всего спектра оборудования, какое бывает в стационарных больницах. Тогда как на большом дирижабле можно оборудовать не просто центр первой помощи, а современный госпиталь с реанимационным отделением, операционными, стационаром, гостиничным комплексом для проживания персонала и висящими садами для прогулок выздоравливающих больных.
Вот другой пример: ежегодные мировые экономические убытки от лесных пожаров составляют около 16 миллиардов долларов. Обычно крупные пожары тушат с воздуха с помощью специально оборудованных самолетов и вертолетов. Однако запас воды, который может доставить самолет, ограничен несколькими десятками тонн. Вертолет, даже крупный, возьмет на борт еще меньше. А большой дирижабль способен унести за один вылет десятки железнодорожных цистерн воды (в одной цистерне — от 60 до 70 тонн). Опустошительные
Первый дирижабль Фердинанда Цеппелина поднялся в воздух 2 июля 1900 года. На фото — один из его «потомков»
Dirigeable — значит «управляемый»
«На тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости» — этот известный закон был сформулирован Архимедом больше двух тысяч лет назад. Удивительно, но прошло полтора тысячелетия, прежде чем Торричелли сумел взвесить воздух и распространить закон Архимеда на газы, и еще полтора столетия понадобилось для появления первого воздушного шара братьев Монгольфье. Название «дирижабль» происходит от французского слова dirigeable — «управляемый». Первую попытку построить подобный аэростат предпринял Жан Пьер Бланшар уже через год после полетов Монгольфье. В 1785 году он сумел пересечь Ла-Манш на воздушном шаре с машущими крыльями, приводимыми в действие мускульной силой аэронавта, однако даже слабый встречный ветер сносил аппарат назад. Попытки снабдить воздушный шар механическим двигателем предпринимались с начала XIX века, но отсутствие двигателей, настолько мощных, чтобы противостоять ветру, и одновременно таких легких, чтобы вся конструкция смогла оторваться от земли, обрекало эти попытки на неудачу, пока не появились двигатели внутреннего сгорания. Уже после первых полетов Монгольфье стало очевидно, что использовать водород для наполнения аэростатов куда эффективнее, чем нагретый воздух. Помимо водорода в аэростатах и дирижаблях использовался светильный газ — смесь угарного газа, водорода и метана. Его было несложно производить в больших количествах путем сухой перегонки каменного угля. Этот же газ использовался в качестве топлива для двигателя, что было весьма удобно — газ можно было брать прямо из оболочки. Таков был дирижабль Хенлейна, построенный в 1872 году. Двигатель мощностью 5 л. с. позволял дирижаблю развивать скорость до 19 км/ч. Массовое строительство дирижаблей началось в XX веке и связано в первую очередь с именем Фердинанда Цеппелина. Крупнейшие дирижабли, построенные его компанией, могли перевозить до сотни пассажиров со скоростью более 100 км/ч на расстояния более 10 тысяч километров. Один из крупнейших дирижаблей — «Граф Цеппелин» — выполнил с начала пассажирских перевозок в 1928 году 590 безаварийных полетов, в числе которых кругосветное путешествие, совершенное им за 21 день.
Гибридные дирижабли
Изучение катастроф дирижаблей в первой половине XX века показало, что причиной большинства аварий была их недостаточная маневренность. Единственным активным аэродинамическим элементом такого транспорта является его хвостовое оперение. В отличие от самолета дирижабль имеет при посадке слишком низкую скорость, что делает аэродинамические рули неэффективными. В момент причаливания к мачте экипаж такого судна может рассчитывать лишь на действия наземной команды. «Гинденбургу» для причаливания требовалась наземная команда из 200 человек. Даже намного более скромному по размерам рекламному дирижаблю Goodyear нужны 15 человек. Использование людей в качестве воздушных тормозов делает эксплуатацию дирижабля очень дорогой, а сами «тормоза» зачастую оказываются неэффективными. Например, грузовой дирижабль, рассчитанный на перевозку тысячи тонн полезного груза, в разгруженном состоянии будет тянуть в небо с силой, равной этой же тысяче тонн! Ни о какой доставке груза на необорудованную площадку, где отсутствует возможность закрепить швартовы, способные удержать рвущегося в небо гиганта, не может быть и речи. Решение этой проблемы было найдено в России. Если дирижабль оборудован достаточно мощными двигателями, то не обязательно компенсировать гелием весь его вес. Достаточно лишь скомпенсировать разницу между весом корабля и силой тяги двигателей. А в горизонтальном полете дополнительная подъемная сила будет создаваться за счет специальной формы корпуса — выпуклого сверху и плоского снизу, работающего подобно крылу самолета. Такая схема дирижабля получила название гибридной.
Несмотря на кажущуюся простоту идеи, первый гибридный дирижабль, или, как его назвали создатели, «безаэродромный летательный аппарат с аэростатической разгрузкой», был запатентован лишь в 1987 году с закреплением приоритета за Россией. Тогда же был построен действующий прототип — безаэродромный самолет «Бэлла-1».
Из этой идеи вырос российский проект «Фиалка», в рамках которого разработаны аппараты различной грузоподъемности, дальности и быстроходности. В 1980-х годах в Тюмени построили действующий прототип такого летательного аппарата. Интересно сравнить технические характеристики старшей
ХарактеристикаФиалка-35 АН-225 Взлетная масса, т 493 600 Суммарная мощность двигателей, кВт 44670 138000Крейсерская скорость, км/ч 180 800 Перегоночная дальность, км 40000 14700 Целевая загрузка, т, при дальности 4500 км 286 200 Взлетная/посадочная скорость, км/ч 60/60 250/260 Требования к взлетно-посадочной площадке Естественная площадка: озеро, река, болото, сельскохозяйственное поле. Специально подготовленная взлетно-посадочная полоса длиной 3500 м.
Аналогичные идеи использовала компания Aeros при проектировании летательного аппарата Aeroscraft. Гелий, наполняющий его оболочку, компенсирует только две трети веса воздушного судна. В горизонтальном полете тяга создается двумя воздушными винтами, приводимыми в действие электрическими двигателями, ток для которых вырабатывается водородными топливными элементами. Для вертикального взлета и посадки судно дополнительно оборудовано шестью турбовентиляторными реактивными двигателями.
Предполагается, что первый опытный экземпляр Aeroscraft ML 866 появится уже в 2010 году. Коммерческий же вариант сможет перевозить сотню пассажиров на расстояние до 5 000 километров со скоростью 200 км/ч на высоте около 3 500 метров. Перелет из Москвы во Владивосток, например, займет почти сутки, что втрое превышает время, которое сейчас тратит пассажир самолета, но следует учесть, что комфорт такого путешествия будет несравним с авиационным. Пассажирам не придется восемь часов сидеть в кресле — им предложат просторные каюты, ресторан, кинозал, прогулочную палубу, возможно, бассейн со спортзалом, словом, весь набор услуг, предлагаемый пассажирам круизного лайнера, при этом стоимость перелета оказывается в несколько раз ниже, чем на самолете.
Еще более интересен проект дирижабля SkyCat (сокращение от Sky Catamaran — небесный катамаран). Планируется выпустить три модели: SkyCat-20, SkyCat-220 и SkyCat-1000 грузоподъемностью соответственно 20, 200 и 1 000 тонн. Это гибридные дирижабли, имеющие форму катамарана, что обеспечивает лучшую устойчивость в воздухе. В проекте SkyCat использована принципиально новая форма корпуса, представляющего собой два баллона, соединенных посередине и имеющих профиль самолетного крыла. В горизонтальном полете до трети подъемной силы обеспечиваются аэродинамикой. При посадке плоская нижняя поверхность делает воздушное судно менее уязвимым по отношению к боковому ветру, столь опасному для классических дирижаблей. По мере приближения к земле гигантские вентиляторы начинают нагнетать воздух под днище судна, создавая воздушную подушку, а сразу же после касания вентиляторы переключаются на всасывание, надежно фиксируя дирижабль на земле.
Гибридные дирижабли Aeroscraft проектируются в нескольких вариантах. Грузовой Aeroscraft Freight сможет брать на борт до 60 тонн. Пассажирский Aeroscraft ML 866 будет иметь площадь внутренних помещений 500 м2, на которых и можно разместить летающий офис, гостиницу или частные апартаменты. За сутки он сможет преодолевать до 5 тысяч километров, двигаясь на высоте от 2 до 3,5 километра. Компания Aeros планирует начать летные испытания в 2010 году
Невыполненные дирижабли
Оболочка жесткого дирижабля не может расширяться, и объем вытесняемого ею воздуха по мере подъема аппарата остается постоянным, в то время как плотность воздуха с высотой уменьшается. На некоторой высоте вес вытесненного воздуха сравняется с весом дирижабля и дальнейший подъем прекратится. Поэтому высотные дирижабли строятся по так называемой «невыполненной» схеме. Хотя более точно было бы называть такие дирижабли «ненаполненными», поскольку весь секрет состоит в том, чтобы не наполнять оболочку газом под завязку, а оставить ей возможность расширяться по мере уменьшения внешнего атмосферного давления при подъеме дирижабля. Возможно, вы обращали внимание на то, что при запуске стратосферных баллонов они выглядят сморщенными вытянутыми луковицами, привязанными стропами к стартовой площадке. Такие баллоны обычно наполнены на 1/10, а иногда даже всего на 1/100 их максимального объема. По мере подъема давление наружного воздуха падает, газ, находящийся внутри баллона, расширяется и подъемная сила остается постоянной. Так происходит до тех пор, пока баллон не надуется полностью и не примет сферическую форму. Если мы наполнили стратостат на 1/10 от его максимального объема, то это произойдет на высоте, где давление воздуха составляет 1/10 нормального атмосферного давления, то есть около 16 километров. Невыполненные дирижабли принципиально не отличаются от невыполненных стратостатов. Первый фактически представляет собой баллон стратостата, называемый «баллонетом», помещенный внутрь жесткой внешней оболочки, позволяющей сохранять неизменными аэродинамические свойства дирижабля. Часто баллонетов в корпусе дирижабля несколько, и изменение степени их наполнения позволяет перераспределять центр плавучести воздушного судна, компенсируя неравномерное распределение груза или внешние воздействия. При подъеме такого дирижабля гелий расширяется и баллонет, раздуваясь, вытесняет воздух из пространства между ним и внешней оболочкой, заполняя на максимальной высоте весь объем корпуса корабля.
Запечатанный во тьме. Том 1. Тысячи лет кача
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
рейтинг книги
Старая дева
2. Ваш выход, маэстро!
Фантастика:
фэнтези
рейтинг книги
Наследник 2
2. Старицкий
Фантастика:
попаданцы
альтернативная история
фэнтези
рейтинг книги
Лейб-хирург
2. Зауряд-врач
Фантастика:
альтернативная история
рейтинг книги
Крещение огнем
5. Ведьмак
Фантастика:
фэнтези
рейтинг книги
Мастер Разума III
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
рейтинг книги
Охотник за головами
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
рейтинг книги
Адвокат вольного города 7
7. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
фантастика: прочее
рейтинг книги
Прометей: каменный век II
2. Прометей
Фантастика:
альтернативная история
рейтинг книги
Пустоцвет
Любовные романы:
современные любовные романы
рейтинг книги
Я еще не князь. Книга XIV
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Город драконов
1. Город драконов
Фантастика:
фэнтези
рейтинг книги
Взлет и падение третьего рейха (Том 1)
Научно-образовательная:
история
рейтинг книги
