Чтение онлайн

на главную - закладки

Жанры

Журнал «Вокруг Света» №07 за 2007 год
Шрифт:

Снимок пузырьковой камеры, где виден процесс рождения и распада первого зарегистрированного омега-гиперона. K--мезон взаимодействует с протоном, образуются омега--гиперон и два мезона (K0 и K+), которые далее распадаются в другие частицы. Справа: расшифровка снимка. Траектории нейтральных частиц, невидимых в пузырьковой камере, отмечены пунктиром

Пузырьковая камера позволяет визуализировать треки в реальном времени, однако ее главный недостаток заключается в том, что она должна работать непрерывно, цикл за циклом, независимо от того, пролетели частицы или

нет. В подавляющем большинстве случаев на фотографиях ничего нет, а поиск какого-то редкого процесса на десятках тысяч снимков становится очень трудоемким занятием.

Чтобы избавиться от бесполезных циклов работы, физики изобрели искровую камеру. Она тоже визуализирует траектории частиц, но иным, электрическим, способом. В отличие от пузырьковой камеры, ее можно запускать только тогда, когда гарантированно пролетает какая-то частица, что позволяет избавиться от «холостых» снимков. Именно использование искровой камеры позволило в 1962 году открыть мюонное нейтрино.

Современные универсальные детекторы, применяемые на больших ускорителях, устроены намного сложнее. Их главная черта — многослойность. Все вместе разные компоненты детектора извлекают из пролетающих частиц максимум информации: координаты точки рождения, скорость, импульс, энергию и тип. Все это необходимо для понимания того, что именно произошло с частицами из встречных пучков в момент их столкновения.

Ближе всего к точке столкновения расположен вершинный детектор. Его задача — с максимальной точностью восстановить первые сантиметры траектории заряженной частицы. Имея несколько таких траекторий от одного столкновения, можно проследить их до пересечения и с субмиллиметровой точностью восстановить вершину — точку в пространстве, в которой произошло рождение частиц.

Следующими идут трековые детекторы. Они измеряют искривление траектории в магнитном поле и позволяют вычислить импульс частицы. Часто в качестве трековых детекторов используются дрейфовые камеры. В них с мелким шагом натянуты тонкие проволочки под напряжением. Заряды, порожденные пролетевшей частицей, оседают на ближайшей проволочке, сообщая регистрирующей аппаратуре, где пролетела частица. Из сигналов с многих проволочек и складывается траектория частицы.

Следующим слоем расположены черенковские детекторы, которые измеряют скорость пролетевшей заряженной частицы. Зная импульс и скорость, можно затем вычислить массу частицы и определить ее тип. Тут главная проблема состоит в том, что для всех рождающихся частиц скорость очень близка к световой. Требуется устройство, которое надежно различает, например, 95 и 99% скорости света, что при равных импульсах отвечают частицам с массами, различающимися вдвое.

На помощь приходит еще один физический эффект, на этот раз из оптики. Свет распространяется со скоростью с=300 000 км/с только в вакууме. При входе в прозрачную среду с показателем преломления n он замедляется до скорости c/n. А вот элементарные частицы при этом не тормозятся, и поэтому их скорость оказывается выше скорости света в данной среде. В 1934 году советские физики П.А. Вавилов и С.И. Черенков открыли, что такая заряженная частица излучает свет (черенковское излучение) под углом к направлению движения, и этот угол зависит от скорости частицы.

Для создания черенковских детекторов пришлось решить интересную задачу из области материаловедения. Для максимальной эффективности требовалось вещество с показателем преломления n=1,01–1,05. Но ничего подобного в природе не существует (например, для воды n=1,33, а для газов он не превышает n=1,001), и потому нужные материалы пришлось создавать искусственно. Так в детекторах появились аэрогели, которые иногда называют «твердым дымом». В руках кусок аэрогеля вызывает непривычные ощущения: по прочности он примерно как пенопласт, но ощутимо легче него и вдобавок прозрачный. Подбросив аэрогель в воздух, можно заметить, что падает он как бы «неохотно» — ведь он всего в несколько раз

плотнее воздуха.

Наконец, внешние слои детектора состоят из нескольких разных калориметров — приборов, измеряющих энергию частиц. Эти компоненты детектора обязаны стоять самыми последними, поскольку для надежного измерения энергии частица должна полностью поглотиться калориметром и передать ему всю свою энергию. Для этого на пути частицы ставятся слои вещества с тяжелыми атомами, при столкновении с которыми порождается лавина вторичных частиц. Лавина застревает в детекторе, и вся ее энергия переходит частично в тепло, а частично — в свет. Эту вспышку улавливают фотоэлектронные умножители. Они превращают ее в электрический сигнал, измеряя который можно с хорошей точностью рассчитать энергию первоначальной частицы.

Все это — стандартная начинка современного детектора, его «анатомия». Но есть еще большая интересная тема, связанная с его «физиологией», с тем, что в нем происходит непосредственно в ходе эксперимента. Сгустки частиц сталкиваются внутри детектора миллионы раз в секунду, и при этом либо рождаются новые частицы, либо происходит упругое рассеяние частиц сгустка. Каждый такой процесс оставляет в разных компонентах детектора много информации. За какие-то доли микросекунды требуется не только собрать всю эту информацию и подготовить детектор к приему следующих частиц, но и успеть предварительно обработать полученные данные. Детектор буквально напичкан сложнейшей электроникой. Важнейшая из электронных систем называется триггером. Он на лету отбирает из всего потока события, интересные с точки зрения физики. Если бы не этот отбор, система хранения данных просто захлебнулась бы чудовищным потоком информации от детекторов. Поэтому создание эффективного триггера — один из важнейших этапов конструирования детектора.

Но даже после отсева объемы получаемой информации остаются огромными. Ожидается, что с LHC будет поступать порядка 10 петабайт (10 миллионов гигабайт) данных в год — грубо говоря, по DVD-диску в несколько секунд. Чтобы осмыслить такое количество информации, потребуется порядка сотни тысяч сегодняшних процессоров, участие в работе примут исследователи со всего мира, а хранение и обработка информации будет вестись с опорой на создаваемую сейчас GRID-технологию, которая обеспечивает глобальное использование распределенных вычислительных ресурсов.

Игорь Иванов, кандидат физико-математических наук

Читайте также на сайте «Вокруг Света»:

Элементарная вселенная

Эффекты ГРИД-среды

Исцеляющий обман

Знаменитый мюнхенский врач-гигиенист Макс Петтенкофер 7 октября 1892 года провел эксперимент, который, по его мнению, должен был окончательно опровергнуть модную теорию Роберта Коха о том, что холера вызывается попаданием в организм специфического микроба. Получив из лаборатории Коха в Берлине культуру холерного вибриона, доктор Петтенкофер развел ее в стакане воды и в присутствии нескольких коллег-медиков выпил получившуюся взвесь до дна. Несмотря на то что в стакане содержалось огромное число микробов, маститый врач так и не заболел холерой.

Cейчас достоверно известно, что Кох был абсолютно прав, и только чудо уберегло доктора Петтенкофера. Одни предполагают, что сотрудники Коха, догадываясь о его намерениях, нарочно прислали ему ослабленный штамм, чтобы не подвергать его опасности. Другие — что сыграли свою роль остатки временного иммунитета, приобретенные во время заболевания холерой в юности. Но в истории медицины этот драматический случай остался прежде всего как ярчайший, хотя и не вполне типичный пример так называемого эффекта плацебо.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Советник 2

Шмаков Алексей Семенович
7. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Советник 2

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Бастард Императора. Том 3

Орлов Андрей Юрьевич
3. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 3

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Страж Кодекса. Книга IV

Романов Илья Николаевич
4. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга IV

Истинная со скидкой для дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Истинная со скидкой для дракона

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Ротмистр Гордеев 3

Дашко Дмитрий
3. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 3

Счастье быть нужным

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Счастье быть нужным

Игра престолов

Мартин Джордж Р.Р.
Фантастика:
фэнтези
5.00
рейтинг книги
Игра престолов

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4