Чтение онлайн

на главную - закладки

Жанры

Журнал «Вокруг Света» №12 за 2006 год
Шрифт:

Морозные рисунки на стекле — это большие кристаллы льда, растущие из водяного пара на границе тепла и холода

Чтобы не путаться с многообразием снежинок, Международная комиссия по снегу и льду приняла в 1951 году довольно простую классификацию кристаллов льда: пластинки, звездчатые кристаллы, столбцы или колонны, иглы, пространственные дендриты, столбцы с наконечниками и неправильные формы. И еще три вида обледенелых осадков: мелкая снежная крупка, ледяная крупка и град.

Тем же законам подчиняется и рост инея, изморози и узоров на стеклах. Эти явления, как и снежинки, образуются при конденсации, молекула за молекулой — на земле, траве,

деревьях. Узоры на окне появляются в мороз, когда на поверхности стекла конденсируется влага теплого комнатного воздуха. А вот градины получаются при застывании капель воды или когда в насыщенных водяным паром облаках лед плотными слоями намерзает на зародыши снежинок. На градины могут намерзать другие, уже сформировавшиеся снежинки, сплавляясь с ними, благодаря чему градины принимают самые причудливые формы.

Нам на Земле довольно и одной твердой модификации воды — обычного льда. Он буквально пронизывает все области обитания или пребывания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Горные ледники , ледяные покровы акваторий, вечная мерзлота, да и просто сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. А лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

Ольга Максименко, кандидат химических наук

Читайте также на сайте «Вокруг Света»:

Кристаллические премудрости

Самый зоркий телескоп

Современные радиотелескопы позволяют исследовать Вселенную в таких подробностях, которые еще недавно находились за пределами возможного не только в радиодиапазоне, но и в традиционной астрономии видимого света. Объединенные в единую сеть инструменты, расположенные на разных континентах, позволяют заглянуть в самую сердцевину радиогалактик, квазаров, молодых звездных скоплений, формирующихся планетных систем. Радиоинтерферометры со сверхдлинными базами в тысячи раз превзошли по «зоркости» самые крупные оптические телескопы. С их помощью можно не только отслеживать перемещение космических аппаратов в окрестностях далеких планет, но и исследовать движения коры нашей собственной планеты, в том числе непосредственно «почувствовать» дрейф материков. На очереди космические радиоинтерферометры, которые позволят еще глубже проникнуть в тайны Вселенной.

Земная атмосфера прозрачна не для всех видов электромагнитного излучения, приходящего из космоса. В ней есть только два широких «окна прозрачности». Центр одного из них приходится на оптическую область, в которой лежит максимум излучения Солнца . Именно к нему в результате эволюции адаптировался по чувствительности человеческий глаз, который воспринимает световые волны с длиной от 350 до 700 нанометров. (На самом деле это окно прозрачности даже немного шире — примерно от 300 до 1 000 нм, то есть захватывает ближний ультрафиолетовый и инфракрасный диапазоны). Однако радужная полоска видимого света — лишь малая доля богатства «красок» Вселенной. Во второй половине XX века астрономия стала поистине всеволновой. Достижения техники позволили астрономам вести наблюдения в новых диапазонах спектра. С коротковолновой стороны от видимого света лежат ультрафиолетовый, рентгеновский и гамма-диапазоны. По другую сторону располагаются инфракрасный, субмиллиметровый и радиодиапазон. Для каждого из этих диапазонов есть астрономические объекты, которые именно в нем проявляют себя наиболее рельефно, хотя в оптическом излучении они, может быть, и не представляют собой ничего выдающегося, так что астрономы до недавнего времени их просто не замечали.

Один из наиболее интересных и информативных диапазонов спектра для астрономии — радиоволны.

Излучение, которое регистрирует наземная радиоастрономия, проходит через второе и гораздо более широкое окно прозрачности земной атмосферы — в диапазоне длин волн от 1 мм до 30 м. Ионосфера Земли — слой ионизованного газа на высоте около 70 км — отражает в космос все излучение на волнах длиннее 30 м. На волнах короче 1 мм космическое излучение полностью «съедают» молекулы атмосферы (главным образом кислород и водяной пар).

Главная характеристика радиотелескопа — его диаграмма направленности. Она показывает чувствительность инструмента к сигналам, приходящим с разных направлений в пространстве. Для «классической» параболической антенны диаграмма направленности состоит из главного лепестка, имеющего вид конуса, ориентированного по оси параболоида, и нескольких гораздо (на порядки) более слабых боковых лепестков. «Зоркость» радиотелескопа, то есть его угловое разрешение, определяется шириной главного лепестка диаграммы направленности. Два источника на небе, которые вместе попадают в раствор этого лепестка, сливаются для радиотелескопа в один. Поэтому ширина диаграммы направленности определяет размер самых мелких деталей небесного радиоисточника, которые еще можно различить по отдельности.

Универсальное для телескопостроения правило гласит, что разрешающая способность антенны определяется отношением длины волны к диаметру зеркала телескопа. Поэтому для увеличения «зоркости» телескоп должен быть побольше, а длина волны — поменьше. Но как назло радиотелескопы работают с самыми длинными волнами электромагнитного спектра. Из-за этого даже огромные размеры зеркал не позволяют добиться высокой разрешающей способности. Не самый крупный современный оптический телескоп с диаметром зеркала 5 м может различить звезды на расстоянии всего 0,02 угловой секунды. Невооруженным глазом видны детали около одной минуты дуги. А радиотелескоп диаметром 20 м на волне 2 см дает разрешение еще в три раза хуже — около 3 угловых минут. Снимок участка неба, сделанный любительским фотоаппаратом, содержит больше деталей, чем карта радиоизлучения той же области, полученная одиночным радиотелескопом.

Широкая диаграмма направленности ограничивает не только остроту зрения телескопа, но и точность определения координат наблюдаемых объектов. Между тем точные координаты нужны для сопоставления наблюдений объекта в разных диапазонах электромагнитного излучения — это непременное требование современных астрофизических исследований. Поэтому радиоастрономы всегда стремились к созданию как можно более крупных антенн. И, как ни удивительно, радиоастрономия в итоге намного обогнала по разрешению оптическую.

У телескопа обсерватории Аресибо в Пуэрто-Рико — самое большое в мире неподвижное цельное зеркало диаметром 305 м. Над сферической чашей на тросах висит конструкция с приемным оборудованием массой 800 тонн. По периметру зеркало окружено металлической сеткой, которая защищает телескоп от радиоизлучения земной поверхности

Рекордсмены в одиночном разряде

Полноповоротные параболические антенны — аналоги оптических телескопов-рефлекторов — оказались самыми гибкими в работе из всего многообразия радиоастрономических антенн. Их можно направлять в любую точку неба, следить за радиоисточником — «копить сигнал», как говорят радиоастрономы, — и тем самым повышать чувствительность телескопа, его способность выделять на фоне всевозможных шумов гораздо более слабые сигналы космических источников. Первый крупный полноповоротный параболоид диаметром 76 м был построен в 1957 году в британской обсерватории Джодрелл-Бэнк. А сегодня тарелка крупнейшей в мире подвижной антенны в обсерватории Грин-Бэнк ( США ) имеет размеры 100 на 110 м. И это практически предел для одиночных подвижных радиотелескопов. Увеличение диаметра имеет три важных следствия: два хороших и одно плохое. Во-первых, самое важное для нас — пропорционально диаметру возрастает угловое разрешение. Во-вторых, растет чувствительность, причем гораздо быстрее, пропорционально площади зеркала, то есть квадрату диаметра. И, в-третьих, еще быстрее увеличивается стоимость, которая в случае зеркального телескопа (как оптического, так и радио) примерно пропорциональна кубу диаметра его главного зеркала.

Поделиться:
Популярные книги

Господин следователь. Книга 2

Шалашов Евгений Васильевич
2. Господин следователь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Господин следователь. Книга 2

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3

Государь

Кулаков Алексей Иванович
3. Рюрикова кровь
Фантастика:
мистика
альтернативная история
историческое фэнтези
6.25
рейтинг книги
Государь

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Warhammer 40000: Ересь Хоруса. Омнибус. Том II

Хейли Гай
Фантастика:
эпическая фантастика
5.00
рейтинг книги
Warhammer 40000: Ересь Хоруса. Омнибус. Том II

Господин моих ночей (Дилогия)

Ардова Алиса
Маги Лагора
Любовные романы:
любовно-фантастические романы
6.14
рейтинг книги
Господин моих ночей (Дилогия)

Идеальный мир для Лекаря 27

Сапфир Олег
27. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 27

Прорвемся, опера! Книга 4

Киров Никита
4. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 4