Чтение онлайн

на главную - закладки

Жанры

Журнал «Вокруг Света» №6 за 2002 год
Шрифт:

Спас положение швейцарский физик Вольфганг Паули, в 1930 году высказавший предположение, что при бета-распаде вместе с электроном рождается какая-то частица – невидимка, которая и уносит недостающую часть энергии. Незамеченной эта частица остается потому, что не имеет массы покоя и электрического заряда и не способна отрывать электроны от атома или расщеплять ядра, иными словами, не может производить те эффекты, по которым обычно судят о появлении частицы. К тому же она очень слабо взаимодействует с веществом, а потому может пройти через большую толщу вещества, не обнаруживая себя.

В те годы, когда ученым были известны только электрон, протон и фотон, для подобного предположения была нужна большая научная смелость. После открытия в 1932-м тяжелой нейтральной частицы – нейтрона – итальянский

физик Энрико Ферми предложил называть частицу, охарактеризованную Паули, «нейтрино», что буквально означает «нейтрончик». Как выяснилось позднее, гипотеза о существовании нейтрино «спасла» не только закон сохранения энергии, но и законы сохранения импульса и момента количества движения, а также основные принципы статистики частиц в квантовой механике. А сама гипотеза Паули естественным образом вошла в теорию бета-распада, созданную Ферми в 1934 году. Прежде чем стать равноправным членом семьи элементарных частиц, нейтрино еще долгое время оставались чисто гипотетическими частицами. Совершенно необходимые для объяснения многих легко наблюдаемых превращений сами они на протяжении более чем 20 лет оставались неуловимыми.

Наблюдение реакций, связанных с нейтрино, стало возможным только после создания ядерных реакторов. Физики-ядерщики многих стран пытались экспериментально подтвердить существование теоретически «вычисленной» частицы. Ведь для окончательного доказательства существования нейтрино нужно было увидеть его непосредственное воздействие на вещество. Но получилось так, что первыми удалось обнаружить не нейтрино, а его античастицы – антинейтрино, которые в результате бета-распада осколков деления урана при работе атомного реактора испускаются в громадном количестве. Такой опыт был осуществлен в 1953 году американскими учеными Фредериком Рейнесом и Клайдом Коуэном на реакторе в Хэнфорде. Им удалось обнаружить характерную цепочку событий, вызванных антинейтрино. Этот эксперимент, с учетом «призрачности» свойств частиц, получил название проект «Полтергейст». За участие в этих исследованиях и за последующие эксперименты ученый-физик Фредерик Рейнес был в 1995 году удостоен Нобелевской премии.

К 2000-му году было теоретически обосновано и экспериментально подтверждено существование трех типов нейтрино: электронного, мюонного и тау-нейтрино.

Однако это отнюдь не означает завершения исследований в области изучения физики этих частиц. Ученым не терпится узнать, обладает ли нейтрино массой, поскольку результат этих исследований может серьезно поколебать стройную структуру Стандартной модели материи. Подобные эксперименты уже идут в Японии, готовятся в Лаборатории Ферми и планируются в ЦЕРНе. Обнаружение массы нейтрино крайне важно и для астрофизики – это помогло бы разрешить парадокс «скрытой массы» и прояснить проблемы, касающиеся судьбы Вселенной, а также многие другие вопросы космологии.

Источник информации

Нейтрино естественного происхождения имеют три принципиально разных источника. Первый из них – это реликтовые нейтрино, оставшиеся от Большого Взрыва. Согласно модели горячей Вселенной в настоящее время их температура близка к абсолютному нулю (около 2К). Хотя в среднем в 1 см3 пространства содержится от 300 до 400 реликтовых нейтрино всех трех типов. Однако практического метода для регистрации этих реликтовых нейтрино пока нет. Вторым источником нейтрино служат ядерные реакции, идущие в ядрах звезд. Солнце производит порядка 2•1038 нейтрино каждую секунду, а сверхновые звезды могут испустить в тысячу раз больше нейтрино, чем наше Солнце произведет за 10 миллиардов лет его жизни. Третьим «поставщиком» высокоэнергетичных нейтрино являются космические лучи, пронизывающие Землю со всех сторон.

На сегодняшний момент большинство наших знаний о Вселенной получено из наблюдений фотонов. Фотоны обильно вырабатываются, стабильны и электрически нейтральны, их просто обнаружить в широкой области энергий, а их спектры несут детальную информацию о химических и физических свойствах источников. Но горячие плотные области в ядрах звезд, ядра активных галактик и других энергетичных астрофизических источников для фотонов непрозрачны.

Обнаружение космических источников нейтрино может пролить

свет на физику экзотических астрономических объектов, таких как экстремально мощные активные ядра галактик или таинственные гамма-вспышки, и помочь сделать шаг вперед в понимании загадки темной материи. Одна из интереснейших и труднейших задач для физиков и астрономов – «поймать» нейтрино внеземного происхождения, и прежде всего измерить поток нейтрино от Солнца, что позволит подтвердить теоретические гипотезы о механизмах реакций, обеспечивающих его светимость. Солнце производит только электронные нейтрино, но они значительно различаются по своим энергиям. Согласно Стандартной Солнечной Модели солнечная светимость поддерживается главным образом за счет энергии, которая освобождается в результате цепочки реакций, приводящей к образованию гелия из четырех протонов (водородный цикл). Но иногда происходит побочная реакция превращения бериллия в бор, и в этом случае образуются нейтрино с более высокой энергией.

Трое из ядра

Антинейтрино, как и нейтрино, возникло чисто теоретически, но после эксперимента в рамках проекта «Полтергейст» получило полное право на существование. Нейтрино рождается во всех процессах, где рождается позитрон или поглощается электрон, а антинейтрино рождается при испускании электрона или поглощении позитрона.

Очень скоро выяснилось, что нейтрино появляется не только при бета-распаде.

В 1936 году в космических лучах были обнаружены частицы – мюоны, абсолютные двойники электрона во всем, кроме массы. Масса мюона в 206,8 раза больше массы электрона, и из-за этого он нестабилен и быстро распадается на электрон, нейтрино и антинейтрино. Таким образом, оказалось, что нейтрино появляется в компании с электроном или с мюоном. В первом случае говорят об электронном нейтрино, а во втором – о мюонном нейтрино.

Тождественны ли эти нейтрино, или все же это два типа частиц, можно было решить только экспериментально. Смысл эксперимента, идея которого принадлежала Бруно Понтекорво, состоял в следующем. Если оба нейтрино тождественны, то мюонные нейтрино и антинейтрино будут порождать как мюоны, так и электроны или позитроны, если же они различны, то следует ожидать появления только мюонов. В 1962 году в США на одном из ускорителей был проведен эксперимент, подтвердивший существование двух типов нейтрино и антинейтрино – электронных и мюонных.

В 1975 году группой во главе с Мартином Перлом в Стэнфорде (Stanford Linear Accelerator Center) была открыта тау-частица. Она имеет массу, в 3 500 раз большую, чем электрон, и ее распад показывал то же самое несоответствие энергии, которое привело Паули к предсказанию нейтрино. Это дало серьезные основания предполагать существование третьего сорта нейтрино, связанного с тау-частицей.

И наконец, в июле 2000 года участниками эксперимента по непосредственному наблюдению тау-нейтрино было объявлено о получении результатов, подтверждающих существование элементарной частицы, названной тау-нейтрино. Таким образом, исследования показали, что возможно существование трех видов нейтрино, представляющих собой полный набор частиц этого класса: электронный нейтрино, мюонный нейтрино и тау-нейтрино, причем каждый со своим антинейтрино. В ядерной физике эти три разновидности нейтрино называются ароматами.

Ловушки для неуловимых

Для нейтрино солнечного вещества как будто и не существует: они улетают с места возникновения по прямолинейной траектории, нигде и ничем не отклоняясь, многие из них достигают поверхности Земли. Не имеет значения, день стоит или ночь: днем нейтрино прилетают сверху, а ночью – снизу, свободно пронзая земной шар. К счастью, существуют изотопы, с помощью которых можно устроить для нейтрино хоть и небольшое, но заметное препятствие. Наиболее известным из них является хлор-37. В тех редких случаях, когда нейтрино сталкивается с ядром атома хлора, это ядро испускает электрон и возникает атомное ядро радиоактивного аргона, которое распадается через 35 дней. Используя эту реакцию, можно построить детектор для солнечных нейтрино, который, чтобы компенсировать редкость таких столкновений, должен иметь большие размеры и для защиты от фонового излучения находиться глубоко под землей.

Поделиться:
Популярные книги

Пророк, огонь и роза. Ищущие

Вансайрес
Фантастика:
фэнтези
5.00
рейтинг книги
Пророк, огонь и роза. Ищущие

Собрание сочинений В. К. Арсеньева в одной книге

Арсеньев Владимир Клавдиевич
5. Абсолют
Приключения:
исторические приключения
5.00
рейтинг книги
Собрание сочинений В. К. Арсеньева в одной книге

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Эволюционер из трущоб. Том 3

Панарин Антон
3. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
6.00
рейтинг книги
Эволюционер из трущоб. Том 3

Всемирная энциклопедия афоризмов. Собрание мудрости всех народов и времен

Агеева Елена А.
Документальная литература:
публицистика
5.40
рейтинг книги
Всемирная энциклопедия афоризмов. Собрание мудрости всех народов и времен

Как притвориться идеальным мужчиной

Арсентьева Александра
Дом и Семья:
образовательная литература
5.17
рейтинг книги
Как притвориться идеальным мужчиной

Законы Рода. Том 6

Андрей Мельник
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Босс Мэн

Киланд Ви
Любовные романы:
современные любовные романы
8.97
рейтинг книги
Босс Мэн

Правильный попаданец

Дашко Дмитрий Николаевич
1. Мент
Фантастика:
альтернативная история
5.75
рейтинг книги
Правильный попаданец

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Виктор Глухов агент Ада. Компиляция. Книги 1-15

Сухинин Владимир Александрович
Виктор Глухов агент Ада
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Виктор Глухов агент Ада. Компиляция. Книги 1-15