Чтение онлайн

на главную - закладки

Жанры

Золото, пуля, спасительный яд. 250 лет нанотехнологий
Шрифт:

Результат был обескураживающим. Но, с другой стороны, откуда вообще следует, что синтетическая ДНК будет вести себя точно так же, как природная? Возможно, для ее правильной работы недостаточно точной последовательности нуклеотидов? Ведь у белков, например, последовательность аминокислот задает лишь первичную структуру белка, который становится собственно белком лишь на более высоких стадиях самоорганизации. Впору было вспомнить о “жизненной силе”, без которой, по уверению теологов и даже некоторых “исследователей”, функционирование живых систем невозможно.

Похожая ситуация существовала в химии два века назад. Тогда господствовало убеждение, что органические вещества – продукт жизнедеятельности живых организмов, химики могут заниматься лишь превращениями органических веществ, но синтезировать их из неорганических веществ невозможно. Лишь в 1828 году немецкий химик Фридрих Вёлер (1800–1882)

синтезировал органическое вещество мочевину из неорганических сульфата аммония и цианата калия, нанеся первый удар по теории витализма.

Результатам группы Крейга Вентера удалось найти рациональное объяснение: просто в синтез вкралась небольшая ошибка, несколько неправильно поставленных нуклеотидов. После исправления ошибок синтетический геном заработал как надо! Но на этом повороте Вентера обошел Экарт Уиммер из Университета Стони Брук, штат Нью-Йорк. В 2002 году он опубликовал работу по синтезу вируса полиомиелита из органических реактивов. Синтетические вирусные частицы оказались совершенно неотличимы от естественных по всем параметрам – размеру, поведению, заразности. Эта работа принесла Уиммеру приоритет в создании синтетических вирусов и, полагаю, чувство глубокого морального удовлетворения: обставить Крейга Вентера, великого и ужасного, дорогого стоит.

Замечу, что непосредственно синтез молекулы ДНК, состоящей из 7741 пары нуклеотидов, занял у группы Уиммера три года. В настоящее время скорость машинной сборки ДНК увеличилась в десятки раз, что дало возможность получить множество синтетических вирусов.Процесс их получения отражает квинтэссенцию нанотехнологий – технологий будущего. Мы синтезируем некий шаблон (молекулу ДНК, можно в единственном экземпляре), затем размножаем его (в случае вирусов роль копировального аппарата играют бактерии), при необходимости используем его как матрицу для получения других частиц (в случае вирусов – белков), а затем создаем условия, при которых полученные частицы самоорганизуются – формируют требуемый нам материал или целое устройство.Это глава по объему уступает только предыдущей главе о ДНК. Ничего удивительного, ведь вирусы касаются всех и каждого. Кроме того, по своему размеру и численности они занимают центральное место в природе. Они все без исключения представляют собой сложно организованные объекты наноразмеров, составленные из молекул ДНК и белков, имеющих в свою очередь наноразмеры. Все данные о строении и функционировании вирусов, полученные учеными с момента их открытия Д.И. Ивановским в 1892 году, являются неотъемлемой частью нанонауки и одновременно фундаментом для прогресса нанотехнологий.

Глава 10 “Волшебная пуля”

Это словосочетание сейчас употребляют столь часто, что вы, конечно, сразу догадались, о чем пойдет речь: не о военных применениях нанотехнологий, а, на оборот, о делах сугубо мирных и гуманных, о медицине, об адресной доставке или, другими словами, направленном транспорте лекарств [56] . Наверняка знакомо вам и имя человека, придумавшего концепцию “волшебной пули”, – Пауль Эрлих.

Согласно легенде, случилось это так. Эрлих слушал оперу Карла Марии фон Вебера “Вольный стрелок”. Сюжет там завязан вокруг волшебных пуль, которые всегда попадают в цель и добыть которые можно, только продав душу дьяволу. Вот тогда-то Эрлиху и пришла в голову мысль о лекарстве, которое способно самостоятельно найти источник болезни или очаг заболевания и поразить их, не затрагивая здоровые органы и ткани организма. Озарение – почти непременный атрибут открытия, в этой книге много примеров такого рода, которые я не подвергаю со мнению. Но в данном случае дело, как мне кажется, обстояло по-другому. Благодаря опере Вебера Эрлих нашел образное название, действительно удачное и запоминающееся, для концепции, которую он разрабатывал на протяжении многих лет, в сущности всю жизнь.

56

Путаница в терминах связана, в частности, с особенностями перевода. Точно так же волшебную пулю часто называют магической. Первый вариант лично мне нравится больше. Не люблю я магию, ни черную, ни белую, а вот волшебство – это сказка, сказки мы любим.

Родился Пауль Эрлих в 1854 году в еврейской семье на востоке Германии, в Силезии, в маленьком городке Штрелен, который многие биографы за незнанием правил немецкого произношения называют Стрехленом, а поляки после присоединения этих земель в 1945 году и вовсе переименовали в Стшелин. Отец его был далек от науки – он содержал большой

трактир, зато другие члены семьи увлекались всяческими исследованиями. Наибольшее влияние на юного Пауля оказал его двоюродный брат Карл Вейгерт (1845–1904), микробиолог, один из пионеров применения синтетических анилиновых красителей для избирательного окрашивания определенных элементов живых тканей и приготовления биологических препаратов для микроскопических исследований. Он-то и приохотил мальчика к такой раскраске; этому увлечению Эрлих оставался верен всю свою жизнь, и оно же как научный метод позволило ему сделать добрую половину его выдающихся открытий. Обратной стороной медали стало то, что Пауль был с детства погружен в микромир, окружающая природа с населяющими ее макрообъектами, включая людей, интересовала его в гораздо меньшей степени.

Тогда же сложился и стиль его мышления – конкретный, естественно-научный, химико-биологический. Как-то раз учитель словесности в гимназии задал ученикам сочинение на тему “Жизнь как мечта”, ожидая, вероятно, увидеть сплав немецкой чувствительности с немецкой же классической философией. Вот что написал Эрлих: “Основа жизни заключается в нормальных процессах окисления. Мечты являются результатом функционирования нашего мозга, а функции мозга есть не что иное, как то же самое окисление. Мечты – это нечто вроде фосфоресценции мозга”.

Казалось бы, с такими мыслями ему было самое место на медицинском факультете Страсбургского университета, куда Эрлих поступил после окончания гимназии. Тем не менее по отзывам преподавателей он был “отвратительнейшим из студентов”, с ними солидаризировались коллеги из Университетов Бреслау, Фрейбурга и Лейпцига, где Эрлих учился в порядке очередности. Преподаватели хотели приобщить его к медицине в том виде, как они сами ее понимали, Эрлиха же тянуло в сторону химии и микробиологии, его воодушевляли идеи Луи Пастера и Роберта Коха, и он упорно отказывался зазубривать десять с половиной тысяч длинных латинских терминов, знание которых считалось обязательным для каждого выпускника медицинского факультета. Диплом врача он все-таки получил, и случилось это в Лейпциге, в 1878 году.

Тогда же Эрлих устроился работать врачом, а затем заведующим отделением в известной берлинской университетской клинике Шарите. Проработал он там формально – в прямом и переносном смысле – девять лет. Дело в том, что к своим обязанностям врача и к самим больным Эрлих относился добросовестно, иначе и быть не могло, но формально. Лечить людей – не его призвание, он был исследователем, в клинике в любую свободную минуту Эрлих занимался тем же, чем и в университете, – неустанно совершенствовал технику окраски биологических препаратов.

Это далеко не забава. Помните, как была открыта ДНК? Мишер увидел ее в микроскоп в ядре клетки, а вот хромосому, в которой находится ДНК, не разглядел. Произошло это, только когда ученые научились окрашивать хромосомы. Они использовали для этого различные синтетические красители, открытые, к слову сказать, тоже незадолго до этого. Было обнаружено, что разные клетки и даже разные части клеток – внутриклеточные органеллы – одними красителями окрашиваются, а другими нет. Поныне бактерии делят на грам-положительные и грам-отрицательные в зависимости от того, удается ли их окрасить по методике, которую придумал в 1884 году датский бактериолог Ганс Грам.

Ассортимент красителей непрерывно расширялся, предоставляя исследователям, и в частности Эрлиху, обширное поле деятельности. Необходимо было выяснять, в каких тканях, клетках или частях клетки концентрируется новый краситель. Это иногда приводило к открытию новых клеточных структур, которых раньше просто не видели. В сущности, именно так Эрлих впервые обнаружил гематоэнцефалический барьер между кровеносной и центральной нервной системами, который защищает наш мозг от циркулирующих в крови микроорганизмов, токсинов и факторов иммунной системы, воспринимающих ткань мозга как чужеродную [57] . Еще он обнаружил лейкоциты – белые кровяные клетки, потом научился различать разные виды лейкоцитов, в конце концов это позволило Эрлиху сформулировать теорию кроветворения в наших организмах.

57

Концепция гематоэнцефалического барьера, включая сам термин, была окончательно сформулирована в 1921 г. Линой Соломоновной Штерн (1878–1968), первой женщиной-профессором Женевского университета. В 1925 г. Штерн вернулась в СССР, возглавила Институт физиологии АН СССР, в 1939 г. стала первой женщиной – действительным членом АН СССР. Несколько лет провела в лагере, не без этого.

Поделиться:
Популярные книги

Вдовье счастье

Брэйн Даниэль
1. Ваш выход, маэстро!
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Вдовье счастье

Господин следователь. Книга 3

Шалашов Евгений Васильевич
3. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 3

Законы Рода. Том 8

Андрей Мельник
8. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 8

Власть меча

Смит Уилбур
5. Кортни
Приключения:
исторические приключения
5.00
рейтинг книги
Власть меча

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Альда. Дилогия

Ищенко Геннадий Владимирович
Альда
Фантастика:
фэнтези
7.75
рейтинг книги
Альда. Дилогия

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!

Законы Рода. Том 9

Андрей Мельник
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила