100 миллиардов солнц: Рождение, жизнь и смерть звезд
Шрифт:
Рис. 3.3. Ядерные реакции протон-протонной цепочки. Обозначения элементарных частиц такие же, как на рис. 3.2 . В результате этих реакций водород тоже превращается в гелий. На верхней схеме показано, как два ядра водорода сталкиваются и образуют ядро дейтерия. В середине показано, как ядро дейтерия и ядро водорода объединяются в ядро изотопа гелия. При столкновении двух ядер этого изотопа гелия образуется нормальный гелий с массовым числом 4.
Какой же из двух процессов протекает в недрах звезд: углеродный цикл или протон-протонная цепочка? [7]
При достаточно высоких температурах в звездах могут протекать оба процесса. При температуре 10 миллионов градусов происходят в основном реакции протон-протонной
Реакции протон-протонной цепочки были, по всей видимости, особенно важны при образовании первых звезд, возникших в нашей Вселенной, во время так называемого Большого взрыва, образовались только ядра водорода и гелия. Поэтому в первых звездах не было элементов-катализаторов, необходимых для работы углеродного цикла. Следовательно, их существование должно было поддерживаться за счет реакций протон-протонной цепочки. Ядра углерода возникли в недрах звезд позже из ядер гелия. Этот процесс мы рассмотрим в следующем разделе. Только после образования ядер углерода в последующих поколениях звезд появились элементы-катализаторы, которые необходимы для реакций углеродного цикла.
7
Реакции протон-протонной цепочки начинаются со столкновения двух протонов, а заканчивается эта цепочка тоже образованием двух протонов. Поэтому у нее есть и другое название — водородный цикл. — Прим. перев.
Возникновение более тяжелых элементов
Что происходит в звезде, когда весь водород превратится в гелий? Эдвин Сальпетер, который в настоящее время преподает в Корнельском университете в США, показал, как гелий может превращаться в углерод. Вообще говоря, для этого превращения достаточно трех ядер гелия. Если эти ядра объединятся, то возникнет ядро углерода с массовым числом 12. Однако одновременное столкновение трех ядер гелия практически невероятно. Более вероятен процесс, который идет в две стадии (рис. 3.4). При этом вначале объединяются два ядра гелия и образуется ядро элемента бериллия с массовым числом 8. Этот изотоп бериллия радиоактивен. Возникшее ядро бериллия существует чрезвычайно короткое время, которое даже трудно себе представить. Спустя несколько десятимиллионных частей одной миллиардной доли секунды это ядро снова распадается на два ядра гелия, из которых оно возникло. Но если за этот короткий промежуток времени ядро изотопа бериллия столкнется с третьим атомом гелия, то возникнет устойчивое ядро углерода. Ядра изотопа Be8 распадаются значительно чаще, чем происходят их столкновения с третьим атомом гелия. Однако в звездном веществе с температурой 100 миллионов градусов такие превращения происходят настолько часто, что освобождающаяся энергия может поддерживать постоянную температуру звезды и ее излучение. Что происходит дальше? При еще более высоких температурах могут объединяться атомы углерода. После объединения они распадаются разными способами на ядра таких элементов, как магний, натрий, неон и кислород. Атомы кислорода могут объединяться с образованием ядер серы и фосфора. Так образуются все более тяжелые атомные ядра. Возникает вопрос, могут ли в недрах звезд постепенно образовываться из водорода и гелия все химические элементы? Мы вернемся к нему в гл. 11. Теперь же нам достаточно знать, что в недрах звезд могут происходить ядерные реакции и прежде всего-превращение водорода в гелий. Они могут протекать в условиях, которые реально существуют во внутренней части звезд, а выделяющаяся энергия позволяет поддерживать излучение звезд в течение длительного времени.
Рис. 3.4. Превращение гелия в углерод. Два ядра гелия сливаются с образованием чрезвычайно радиоактивного ядра бериллия, которое очень скоро снова распадется на два ядра гелия. Ядро изотопа бериллия превращается в ядро углерода (с испусканием кванта света) только в том случае, если за короткое время жизни изотопа Be8 произойдет его столкновение с еще одним ядром гелия.
Но откуда, собственно, мы знаем про свойства звездных недр? Как нам стала известна температура в центре звезд — там, куда никто не может заглянуть и откуда к нам не поступает непосредственно никакой информации? В следующей главе мы расскажем, почему о звездных недрах мы знаем больше, чем о земных. Будет сказано и о том, какую роль сыграли в этом современные вычислительные машины.
Глава 4
Звезды и модели их строения
К счастью, существует возможность заглянуть в недра звезд, узнать их внутреннее строение. Ведь звезды — это не чудо, на которое можно лишь взирать с благоговением. Они, как и все реальные объекты нашего мира, подчиняются законам физики и могут быть объектом научного исследования. Выше мы уже увидели, как был, без лишних слов, поставлен и решен вопрос о том, откуда берется энергия звезд, и как долго может существовать звезда за счет этой энергии ядерных
Ниже мы коротко остановимся на том, как, опираясь на физические законы и некоторые известные свойства звездного вещества, можно получить представление о внутренней структуре звезд, как можно с помощью компьютера заглянуть в их недра. В случае простых звезд достаточно знать массу и химический состав звездного газа. Затем можно, даже не видя этой звезды на небе, решить за письменным столом уравнения, описывающие ее свойства, и полностью определить ее структуру. Таким способом можно узнать не только температуру поверхности звезды и ее светимость, а, следовательно, и положение звезды на диаграмме Г — Р, но и вычислить ее диаметр, а также, что интереснее всего, определить давление, температуру и плотность в любой точке звезды: не только на поверхности, но и в объеме. Читатель, который не слишком интересуется подробностями таких расчетов, может перейти сразу к разделу «Модель „молодого“ Солнца» . В этом разделе мы исходим из того, что физические законы и свойства солнечного вещества, уже описанные нами раньше, заложены в большой программе для вычислительной машины. Затем мы будем только экспериментировать с этой программой.
Сила тяжести и давление газа
Все звезды должны (за исключением коротких переходных периодов) находиться в равновесии. Вес звездного вещества, который давит на внутренние слои звезды, и давление звездного газа должны взаимно уравновешиваться. Не будь давления газа, все звездное вещество сжалось бы в точку в центре звезды. Не будь силы тяжести, давление газа распылило бы все звездное вещество в пространстве. Параметры звездного вещества — давление, температура и плотность — должны быть такими, чтобы в каждой точке звезды сила тяжести и давление уравновешивали друг друга. Это условие равновесия помогает определить давление газа в каждой точке объема звезды. Мы уже видели, как Эддингтон использовал это условие, чтобы найти давление в центре Солнца. Определив это давление, он пришел к выводу, что температура в центре Солнца составляет около 40 миллионов градусов. Чтобы определить величины давления и температуры, необходимо знать свойства газа, из которого состоят звезды.
Вещество, из которого построены звезды, не является чем-то необычным и удивительным. Звезды образованы из элементов, которые мы встречаем и на Земле. Свойства водорода и гелия, основных компонентов солнечного вещества, так же, как и свойства других химических элементов, уже давно изучены. Однако в земных условиях не удается довести вещество до таких высоких давлений и температур, какие существуют в недрах звезд. Тем не менее знание физических законов позволяет нам определить свойства вещества в таких экстремальных условиях. Этому способствует одно чрезвычайно счастливое обстоятельство. На Земле мы привыкли к тому, что газы имеют малую плотность. Если бы мы сжали воздух земной атмосферы или любой газ до плотности воды или еще сильнее, то давление газа в этом случае зависело бы от плотности достаточно сложным образом. Газ может перейти в жидкое или даже в твердое состояние. Законы, описывающие свойства конденсированных тел, сложнее физических законов для газа. Поэтому так плохо изучены свойства вещества в центре Земли и мы так мало знаем о земных недрах. Трудность состоит в том, что при больших давлениях атомы сильно сближаются и их электронные оболочки начинают перекрываться. Как описать такое взаимодействие электронных оболочек разных атомов, точно до сих пор неизвестно.
Другое дело звезды. В их недрах возникают чрезвычайно высокие температуры. В звездах вещество сжато до очень высоких давлений. Одновременно оно разогрето так сильно, что атомы полностью лишены своих электронных оболочек. Электроны уже не связаны с атомными ядрами. Ядра и электроны движутся независимо друг от друга. В таком виде частицы (электроны и ядра) занимают существенно меньше места, чем электрически нейтральный атом водорода. Поэтому горячее звездное вещество ведет себя как разреженный газ, хотя плотность этого вещества так велика, что один его кубический сантиметр может весить более ста граммов. Только этому обстоятельству мы обязаны тем, что о недрах Солнца нам известно больше, чем о земных. Даже если плотность звездного вещества будет еще больше, то и в этом случае-из-за еще более высоких температур — параметры звездного газа будут хорошо известны. Свойства звездного вещества усложняются только тогда, когда температура звезды понижается и ее вещество переходит в твердое кристаллическое состояние. Однако такие процессы важны лишь для небольшого числа звезд, прежде всего — для низкотемпературных белых карликов.
Выделение и перенос энергии
В центральных областях звезд развиваются настолько высокие температуры, что там могут протекать ядерные реакции и выделяется ядерная энергия. Если Аткинсон и Хоутерманс, Бете и фон Вайцзеккер показали в 20-30-е годы, что в недрах звезд ядра атомов могут взаимодействовать друг с другом, то в последующие годы другие ученые-физики получили всю необходимую информацию, которая позволяет нам вычислить, какое количество энергии выделяется в одном грамме звездного вещества при определенных давлении и температуре путем ядерных реакций.
Душелов. Том 3
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
рейтинг книги
Возвышение Меркурия. Книга 3
3. Меркурий
Фантастика:
попаданцы
аниме
рейтинг книги
Кодекс Крови. Книга VII
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Архил...? 4
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
рейтинг книги
Чехов
1. Адвокат Чехов
Фантастика:
фэнтези
боевая фантастика
альтернативная история
рейтинг книги
Переписка 1826-1837
Документальная литература:
публицистика
рейтинг книги
