Чтение онлайн

на главную - закладки

Жанры

100 миллиардов солнц: Рождение, жизнь и смерть звезд
Шрифт:

Если построить с помощью вычислительной машины модель звезды с массой 0,6 солнечной, то мы получим для этой звезды примерно такие же свойства, как у звезды 61 Лебедя А. Наша модельная звезда будет расположена примерно в том же месте на диаграмме Г-Р. Как выглядит внутреннее строение красного карлика? Оно схематически изображено на рис. 4.2, г . Температура в центре составляет всего около 8 миллионов градусов. Все ядерные реакции принадлежат к протон-протонной цепочке. Плотность в центральной части звезды составляет 65 граммов на кубический сантиметр. Таким образом, плотность в центре красного карлика меньше плотности вещества в центре Солнца. Давление составляет около 75 миллиардов атмосфер и примерно равно давлению в центре Спики. Перенос энергии во внутреннем объеме звезды происходит путем излучения. Во внешних слоях наблюдается конвекция, как на Солнце, однако толщина конвективного

слоя существенно больше. Толстый внешний конвективный слой характерен для красных звезд.

Чем ниже мы будем опускаться по главной последовательности, переходя ко все более холодным и красным карликам, тем толще будет внешняя конвективная зона звезд. Если масса звезды составляет всего одну десятую массы Солнца, то все ее вещество от поверхности до центра находится в конвективном движении.

Свойства «молодой» главной последовательности

Теперь мы в основных чертах понимаем свойства звезд главной последовательности. Нам известно, что к главной последовательности принадлежит более 90 % всех звезд. Мы уже установили, что все эти звезды существуют за счет превращения водорода в гелий. Свойства атомов водорода определяют количество выделяющейся энергии, а, следовательно, и наблюдаемые свойства звезд главной последовательности. Если говорить о цвете и яркости звезд, т. е. о свойствах, которые мы можем наблюдать невооруженным глазом, то можно с уверенностью сказать, что эти звезды наглядно демонстрируют нам на небе свойства атомов водорода. Если бы атомы водорода обладали другими свойствами, то и звезды выглядели бы иначе.

Где расположены границы главной последовательности? Можно ли, взяв любое количество богатого водородом вещества подходящего состава, построить из него звезду, которая будет светить за счет превращения водорода в гелий? Допускают ли это законы природы? Как далеко простирается главная последовательность в сторону малых масс? Будет ли функционировать звезда, масса которой не превышает массу человека?

Если мы будем с помощью компьютера, начав со звезды, близкой по размерам к Солнцу, переходить ко все более легким звездам, то температура центральных областей наших звезд будет постепенно понижаться. Реакции протон-протонной цепочки скоро не будут доходить до конца. Эта цепочка обрывается на слиянии двух ядер Не3. Таким образом, превращение водорода в Не4 становится невозможным. Если мы опустимся примерно до восьми сотых массы Солнца, то в таких звездах уже не может происходить превращение водорода в гелий. Температура в недрах столь малых звезд недостаточно велика, чтобы могли сливаться друг с другом ядра водорода. Таким образом, главная последовательность звезд, которые светят за счет превращения водорода в гелий, опускается немного ниже одной десятой массы Солнца. Здесь она заканчивается. Если потребовать от компьютера, чтобы он построил модель для звезды с меньшей массой, в которой сгорает водород, то он откажется это сделать. Если бы я захотел в гигантском эксперименте построить звезду с массой в одну тысячную массы Солнца, то в лучшем случае получилось бы небесное тело, напоминающее по свойствам планету. И никогда не удалось бы образовать мини-звезду, светящуюся за счет ядерных реакций с участием водорода.

А какова же максимальная масса звезды, принадлежащей к главной последовательности? Что будет, если я попытаюсь с помощью компьютера построить звезду в 100, 1000, 1 000 000 раз тяжелее Солнца? В случае таких гигантских масс вычислительная машина позволяет построить «работающую» модель звезды. Однако столь тяжелые звезды имеют одну важную особенность: если такая звезда на короткий промежуток времени немного сожмется, то в ее центральной части давление сильно возрастет, резко увеличится и температура. Превращение водорода в гелий, которое в такой звезде происходит по углеродному циклу, резко ускорится и вызовет такой сильный нагрев внутренних областей звезды, что выделяющаяся энергия вызовет резкое расширение сжавшегося звездного вещества. Но при этом центральная область звезды заметно охладится, выделение ядерной энергии упадет, газовое давление уменьшится и сила тяжести внешних слоев звезды снова начнет сжимать внутренние области. По мере увеличения давления снова возрастет температура звезды и т. д.

Точные решения для этого процесса, полученные наряду с другими исследователями астрономом Иммо Аппенцеллером, работающим в Гейдельберге, показывают, что эти перемещения звездного вещества становятся

все сильнее и сильнее до тех пор, пока при каждом цикле расширения некоторая часть внешних слоев звезды не начнет двигаться так быстро, что уже не сможет возвратиться обратно. С каждым циклом расширения звезда будет терять часть массы, и такой циклический процесс будет продолжаться до тех пор, пока масса нашей сверхзвезды не упадет примерно до 90 масс Солнца. Тогда «заколдованный круг» разрывается. Центральные области такой звезды уже не нагреваются заметным образом из-за давления внешних слоев, ядерные реакции уже не приводят к «перепроизводству» энергии, и причины для периодической «пульсации» звезды исчезают. Звезда становится обычным представителем главной последовательности с массой примерно в 90 солнечных, и в ней происходит спокойное превращение водорода в гелий.

Мне могут возразить, что для начала циклических расширений и сжатий нашей сверхзвезды необходимо, чтобы кто-то сжал эту звезду. Однако во Вселенной нет никого, кто мог бы сжимать звезды. Тем не менее цикл расширения и сжатия все равно начинается, поскольку для его «запуска» достаточно очень небольшого сжатия, чрезвычайно малого отклонения от равновесия. В окружающем нас мире всегда возникают самопроизвольные возмущения. И хотя на звезду никто не воздействует снаружи, достаточно уже перемещения атомов звездного вещества или движения звездного газа в областях, где происходит конвекционный перенос энергии, чтобы «запустить» цикл расширения и сжатия. После такого запуска периодическое расширение и сжатие происходит до тех пор, пока звезда не потеряет достаточно большую долю своей массы.

Таким образом, мы определили естественный верхний предел главной последовательности в нашей модели строения звезд. Этот верхний предел тоже хорошо совпадает с данными наблюдений. До сих пор никто не мог найти звезду, масса которой была бы существенно выше теоретического верхнего предела.

Мы почти правильно определили верхний предел главной последовательности с помощью нашей компьютерной модели. Однако эта модель описывает только «молодые» звезды, звезды, которые только начали свою жизнь. Постепенно количество водорода в центральных областях звезд понижается: вначале в наиболее тяжелых звездах, а затем — во все более и более легких. Звезды начинают стареть. В следующей главе мы рассмотрим этот процесс с помощью все той же компьютерной модели Солнца.

Глава 5

История жизни Солнца

Гелий является своего рода золой, образующейся при сгорании водорода. Когда «молодое» Солнце излучает со своей поверхности энергию в солнечное пространство, в его недрах водород превращается в гелий. С течением времени расходуется все больше и больше водорода. Рассматривая модель «молодого» Солнца, мы предположили, что оно полностью состоит из богатого водородом вещества одинакового состава. Но центральные области нашего Солнца постепенно все больше обогащаются гелием. Поэтому модель, которую мы заложили в компьютер, не может описать изменение свойств Солнца со временем.

От «молодого» Солнца к современному

При конструировании модели для звезд главной последовательности можно определить, какое количество энергии выделяется в каждой точке центральной области звезды за счет сгорания водорода. Известно также, сколько атомов гелия возникает там в каждую секунду. В центре «молодого» Солнца на каждый килограмм вещества образуется за год одна десятимиллионная доля грамма гелия. Если вычислить для каждой точки в объеме звезды, сколько гелия образуется там за миллион лет, то мы получим химический состав модели Солнца, который формируется через миллион лет после начала горения водорода.

Заложив в вычислительную машину новый состав центральных областей звезды, можно получить новое решение для модели. Но при увеличении концентрации гелия меняются и свойства звездного вещества. Иной становится его прозрачность для излучения, а ядерные реакции превращения водорода в гелий идут не так полно, как в «молодом» Солнце. Такая модель звезды описывает свойства Солнца через миллион лет после начала ядерных реакций; она отличается от модели «молодого» Солнца чрезвычайно слабо, поскольку миллион лет-это очень малый промежуток времени по сравнению с миллиардами лет, в течение которых Солнце светит за счет ядерных реакций. Поэтому температура поверхности в новой модели практически такая же, как у «молодого» Солнца, а светимость лишь ненамного выше. Поскольку в центре звезды становится меньше водорода, температура центральных областей Солнца в новой модели слегка повышается. Это означает, что теперь там образуется чуть больше энергии, чем прежде.

Поделиться:
Популярные книги

Отмороженный 8.0

Гарцевич Евгений Александрович
8. Отмороженный
Фантастика:
постапокалипсис
рпг
аниме
5.00
рейтинг книги
Отмороженный 8.0

Газлайтер. Том 14

Володин Григорий Григорьевич
14. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 14

Ермак. Телохранитель

Валериев Игорь
2. Ермак
Фантастика:
альтернативная история
7.00
рейтинг книги
Ермак. Телохранитель

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Сборник коротких эротических рассказов

Коллектив авторов
Любовные романы:
эро литература
love action
7.25
рейтинг книги
Сборник коротких эротических рассказов

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Идеальный мир для Лекаря 22

Сапфир Олег
22. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 22

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад