100 великих парадоксов
Шрифт:
Есть аксиома: расстояние между двумя неподвижными телами остаётся неизменным. Немного изменим её: тела неподвижны, если расстояние между ними остаётся постоянным.
Итак, новая ситуация. Ахиллесу предложили догнать черепаху, которая находится в тысяче шагов от него. Когда он добежал до того места, где была черепаха, она оказалась в той же тысяче шагов от него. Это Гермес, бог торговли, воровства и хитрости, переносил её с той же скоростью, с которой бежал быстроногий Ахиллес. Так продолжалось впредь: как ни старался Ахиллес, расстояние между ним и черепахой оставалось неизменным.
В
Вот и вспомнишь: «Движенья нет, сказал мудрец брадатый…»
Правда, во время бега Ахиллес тратил значительно больше энергии, чем в покое; значит, было движение. Но ведь есть бег на месте…
Общий вывод прост: наш исходный посыл и наши условия мысленного опыта были некорректны. Неверная постановка проблемы заводит мысль в тупик, исключает рациональное решение и вступает в противоречие с опытом и здравым смыслом.
При рассуждениях о движении двух тел принципиальное значение имеет взятая точка отсчёта и метод фиксации перемещений. Например, следствием теории относительности считается парадокс близнецов. Один близнец улетает с Земли, достигает близко к световой скорости, а через некоторое время возвращается на родную планету. Согласно теории, он испытает замедление времени и вернётся более молодым, чем его брат.
Но по той же теории за точку отсчёта можно взять ракету, и формулы останутся теми же, но на этот раз уже землянин при встрече должен быть моложе брата-астронавта. Получается парадокс парадокса близнецов.
Астронавт, в отличие от землянина, испытает огромные перегрузки, что плохо скажется на его здоровье. Выходит, логичней взять точкой отсчёта ракету, раз уж есть свобода выбора.
Впрочем, о парадоксе близнецов мы ещё поговорим.
Стрела
Апории «Ахиллес и черепаха» и «Дихотомия» исходят из гипотезы непрерывности пространства и времени, которые бесконечно делимы.
Николя Бурбаки (псевдоним группы французских математиков ХХ века) сделал вывод: «Вопрос о бесконечной делимости пространства (бесспорно, поставленный ещё ранними пифагорейцами) привёл, как известно, к значительным затруднениям в философии: от Элеатов до Больцано и Кантора математики и философы не в силах были разрешить парадокса – как конечная величина может состоять из бесконечного числа точек, не имеющих размера».
Третья апория Зенона – «Стрела» – предполагает другой вариант: время и пространство делимы на элементарные дискретные моменты времени и точки пространства. Однако и в этом случае, как выясняется, нельзя обойтись без противоречий.
Стрела – третья апория Зенона
Летящую стрелу есть все основания считать неподвижной. Ведь в каждый момент времени она занимает равное себе положение, то есть покоится. Но если она покоится в каждый момент
Напомню: Зенона не надо было убеждать в существовании движения, прохаживаясь перед ним. Он и сам мог с таким же успехом ходить, рассуждая о том, что летящая стрела неподвижна. Для него было важно показать, что в нашем понимании сути движения есть противоречия.
Из Интернета: «В студенческие годы я написал курсовую по апориям Зенона. В ней я утверждал, что апории возникают потому, что движение субстанциально, а покой частный и побочный случай, парадоксальная форма движения, а поэтому при помощи покоя осмыслить движение невозможно. Получил “неуд”. Как вы думаете – заслуженно, или я был прав?»
Мне кажется, умный студент был прав. Хотя бы отчасти.
Движение не может быть частным случаем всеобщего покоя. Ибо покой исключает какое-либо движение.
Состояние покоя – частный предельный или даже исходный момент движения. В этом случае скорость тела равна нулю, только и всего.
Впрочем, и тут не обходится без парадокса. Неподвижное тело относительно одного объекта может находиться в движении относительно другого объекта. Предположим, стрела летит равномерно прямолинейно в космическом пространстве, не испытывая сопротивления. Где-то в стороне движется ракета с космонавтом. Как узнать, летит стрела или покоится?
Раз уж она оказалась в космосе, значит, каким-то образом преодолела земное (лунное) притяжение или была сброшена с космического корабля. В любом случае, она находилась в движении, а теперь продолжает его. Но узнать её скорость нельзя, не зная, когда и где начался её полёт; формально можно считать, что она неподвижна.
Если иметь точки отсчёта в пространстве и времени, то нетрудно будет вычислить скорость стрелы. Без этих сведений остаётся неопределённость: допустимо считать стрелу или летящей, или неподвижной.
В современном варианте эта апория выглядит так. Скоростной киносъёмкой запечатлён полёт стрелы. Прокручивая кадры с обычной скоростью, мы увидим её медленное движение. А на каждом отдельном кадре она будет неподвижной.
Минимальна порция энергии – квант. Если есть подобные «кванты» пространства и времени, то скорость летящей стрелы в каждый квант пространства и времени равна нулю. Сумма таких моментов тоже будет равна нулю. Значит, стрела не движется, хотя известно, что она летит.
Апория свидетельствует о решительном противоречии логичных рассуждений и реальности. Приходится признать ошибочность идеи о кванте времени и пространства. Они не состоят из мельчайших неделимых частей, не дискретны (от латинского слова, означающего «делимый»).
Однако предыдущие апории («Ахиллес и черепаха», «Дихотомия») показали, что время и пространство нет оснований считать непрерывными, то есть бесконечно делимыми. Что же получается? Есть два варианта, и оба сомнительны. Получается неопределённость решения. Хотя есть ещё один, наиболее разумный вывод.
Надо признать время и пространство категориями идеальными. То есть мы ими пользуемся произвольно, чаще всего успешно и с пользой, но порой вступая в противоречие с явлениями материального мира.