Чтение онлайн

на главную - закладки

Жанры

101 ключевая идея: Астрономия
Шрифт:

Пульсар представляет собой вращающуюся нейтронную звезду, испускающую электромагнитный луч, который вращается вместе со звездой. Первый из обнаруженных пульсаров давал всплески радиоизлучения каждые 1,33 секунды, что соответствовало периоду вращения 1,33 секунды. Для сравнения: Солнце совершает полный оборот вокруг своей оси примерно за 4 недели. Если бы Солнце уменьшилось в размерах без потери массы, оно стало бы вращаться быстрее, точно так же, как фигуристка, которая вскидывает руки вверх при вращении. Очень быстрое вращение пульсаров навело астрономов на мысль, что пульсары должны быть очень небольшого по сравнению с Солнцем размера, а следовательно, очень плотными. Нейтронная звезда с массой равной массе Солнца имеет не более 20 км в диаметре и вращается гораздо быстрее Солнца. Вскоре были обнаружены новые пульсары, включая 33-миллисекундный пульсар в центре

Крабовидной туманности. Этот пульсар был первым, испускавшим электромагнитное излучение в диапазоне видимого света. Это открытие подтвердило теорию о том, что пульсар — нейтронная звезда, оставшаяся после взрыва сверхновой. Пульсар обладает очень сильным магнитным полем (порядка 10 6Т) с полюсами, расположенными под углом к оси вращения. Магнитное поле собирает электромагнитное излучение в пучки вдоль магнитной оси; это означает, что луч описывает окружность по мере вращения звезды. Частота вращения пульсара медленно уменьшается, что указывает на постепенную потерю энергии. Периодичность всплесков пульсара в Крабовидной туманности увеличивается примерно на 10 микросекунд в год. В целом, чем старее пульсар, тем медленнее его скорость вращения.

См. также статьи "Эволюция звезд", "Нейтронная звезда", "Радиоастрономия".

РАДАРНАЯ АСТРОНОМИЯ

Радар — это радиолокационное устройство, основанное на принципе пульсирующих коротковолновых радиоимпульсов, предназначенное для обнаружения объектов, отражающих радиоволны, и для измерения расстояний до таких объектов.

Радиотелескопы посылают радарные сигналы к Луне или каменистым планетам, таким, как Марс и Венера, а затем принимают отраженные сигналы. Измеряя интервал между передачей сигнала и приемом отраженного сигнала, можно вычислить расстояние до объекта, умножив половинный цикл передачи/приема на скорость распространения электромагнитных волн в космосе. К примеру, время передачи и приема отраженного сигнала от Марса (42 минуты) дает расстояние 21x60 сx300 000 км/с = = 378 000 000 км. В радарной астрономии используются большие радиотелескопы, определяющие коротковолновые радиоимпульсы длиной порядка нескольких сантиметров. Радарные импульсы, испускаемые большой параболической антенной, рассеиваются при отражении от отдаленного объекта, поэтому детектор должен быть очень чувствительным, так как отраженные импульсы крайне слабые. Тем не менее точность таких измерений позволила определять диаметр и поверхностный рельеф планеты при сканировании импульсов, отраженных от поверхности небесного тела. Кроме того, изменение доплеровского смещения отраженных импульсов от противоположных концов экваториального диаметра планеты позволило точно измерить скорость ее вращения.

С помощью радиоастрономии удалось подтвердить, что электромагнитные волны, проходящие вблизи Солнца, изгибаются под воздействием солнечного тяготения в. соответствии с общей теорией относительности Альберта Эйнштейна. По мере того как линия зрения между Землей и наблюдаемой планетой приближается к Солнцу, этот эффект увеличивает интервал поступления отраженных радарных импульсов. При измерениях выяснилось, что эта величина совпадает с предсказаниями Альберта Эйнштейна с точностью до 0,1 %.

См. также статьи "Планеты", "Радиотелескопы", "Красное смещение".

РАДИОАСТРОНОМИЯ

Радиоастрономия — это область астрономии, которая занимается определением и измерением астрономических источников радиоволн с длиной от нескольких сантиметров и выше. Земная атмосфера позволяет радиоволнам длиной до 10 м достигать поверхности Земли, поэтому большие радиотелескопы можно использовать для картирования источников радиоизлучения на небосводе.

Ученые, работающие над военными радиоустановками в 1942 году, обнаружили, что Солнце — мощный источник радиоволн. В 1946 году был обнаружен еще один мощный источник радиоизлучения в созвездии Лебедя, получивший название Лебедь А. К другим известным источникам радиоизлучения относятся Крабовидная туманность (остатки сверхновой звезды) и галактика М87. Кроме того, было обнаружено, что диск Галактики Млечный Путь тоже источник радиоизлучения.

Благодаря использованию радиотелескопов, настроенных на определение радиоволн длиной 21 см, удалось составить карту распространения водорода в диске Млечного Пути. Такие радиоволны излучаются атомом водорода, когда его электрон со

спином параллельным спину протона переходит в более низкое энергетическое состояние со спином противоположного направления. В отличие от света радиоволны проходят через пылевые облака, закрывающие большую часть диска Млечного Пути. Измеряя величину доплеровского смещения длины радиоволн, ученые определили характер движения и распределения газовых облаков, что дало возможность составить карту спиральных рукавов Млечного Пути. В результате детектирования сильных радиосигналов в плоскости Галактики были обнаружены молекулярные облака, состоящие из окиси азота и углерода; известно, что радиоволны определенной длины соответствуют таким молекулам.

Впоследствии было обнаружено множество других источников радиоизлучения, включая пульсары, квазары и сверхновые. Тот факт, что количество внегалактических источников радиоизлучения увеличивается с расстоянием, породил сомнение в теории стабильного состояния Вселенной и привел к открытию квазаров.

См. также статьи "Электромагнитное излучение", "Пульсар", "Квазар", "Радиотелескопы", "Красное смещение", "Сверхновая".

РАДИОТЕЛЕСКОПЫ

Радиотелескоп — астрономический инструмент, предназначенный для исследования небесных тел в диапазоне радиоволн. Простой рефлекторный поворотный радиотелескоп состоит из большого параболического зеркала с антенной в центральной точке. Когда зеркало направлено на источник радиоизлучения в космосе, радиоволны отражаются от него на антенну и создают сигнал, который является производной от интенсивности радиоволн, создаваемых источником. Сигнал, поступающий с антенны, проходит через мощный усилитель, который, в свою очередь, направляет усиленный сигнал в компьютер для анализа и записи. Зеркало обычно состоит из проволочной сетки, более легкой, чем металлические листы, и столь же эффективной в качестве отражателя радиоволн при условии, что расстояние между отдельными элементами сетки составляет менее 1/20 длины измеряемых радиоволн. Усилитель должен увеличивать мощность сигнала от источника радиоизлучения, не усиливая фоновый шум, или "шипение", обусловленное локальными радиоточками и случайным движением электронов в компонентах самого усилителя. Фоновый шум устраняется путем усреднения сигнала через последовательные короткие интервалы.

Диаметр зеркала определяет область сбора, поэтому для обнаружения более слабых источников необходимы зеркала большего размера. Кроме того, диаметр зеркала определяет разрешение телескопа или степень детальности его показаний. Два источника, расположенные поблизости, могут быть определены как один источник, если диаметр зеркала слишком мал, поскольку дифракция слишком сильно размывает изображение источников. Лоуэлловский радиотелескоп в Чешире (Англия) обладает зеркалом диаметром 78 м с разрешением 0,2° для радиоволн длиной 21 см. Радиотелескоп Айкибо в Пуэрто-Рико представляет собой 300-метровое фиксированное вогнутое зеркало, установленное в естественном понижении рельефа местности.

Благодаря соединению отдельных телескопов удалось значительно повысить их разрешение. В целом, разрешение кратно расстоянию между отдельными телескопами, но лишь при условии, что телескопы расположены вдоль одной линии.

См. также статьи "Радиоастрономия", "Телескопы 3".

РАСШИРЕНИЕ ВСЕЛЕННОЙ

Существуют очень веские научные свидетельства в поддержку теории, согласно которой Вселенная расширяется в результате первичного взрыва, создавшего пространство и время примерно 12 млрд. лет назад. По мере расширения Вселенной, которое продолжается и теперь, формировались галактики, постепенно отдалявшиеся друг от друга. Известно, что скорость разбегания наиболее далеких галактик приближается к скорости света.

Расширение Вселенной было открыто в 1929 году американским астрономом Эдвином Хабблом. На основе своих наблюдений он доказал, что далекие галактики отдаляются от нас со скоростью пропорциональной расстоянию. Это утверждение, известное как закон Хаббла, можно сформулировать в следующем уравнении: для галактики, отдаляющейся на расстояние d, ее скорость отдаления = Hd, где Н — постоянная Хаббла.

С 1 929 года были проведены измерения расстояния и скорости для многих галактик, что подтвердило правильность закона Хаббла и позволило более точно вычислить значение Н. Теперь считается, что величина постоянной Хаббла составляет примерно 20 км/с на миллион световых лет.

Поделиться:
Популярные книги

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Законы Рода. Том 11

Андрей Мельник
11. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 11

Гимназистка. Под тенью белой лисы

Вонсович Бронислава Антоновна
3. Ильинск
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Гимназистка. Под тенью белой лисы

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Чапаев и пустота

Пелевин Виктор Олегович
Проза:
современная проза
8.39
рейтинг книги
Чапаев и пустота

Надуй щеки! Том 7

Вишневский Сергей Викторович
7. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 7

Битва королей

Мартин Джордж Р.Р.
2. Песнь Льда и Огня
Фантастика:
фэнтези
9.61
рейтинг книги
Битва королей

Страж Тысячемирья

Земляной Андрей Борисович
5. Страж
Фантастика:
боевая фантастика
альтернативная история
фэнтези
5.00
рейтинг книги
Страж Тысячемирья

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Собрание сочинений. том 7.

Золя Эмиль
Проза:
классическая проза
5.00
рейтинг книги
Собрание сочинений. том 7.