Чтение онлайн

на главную - закладки

Жанры

101 ключевая идея: Астрономия
Шрифт:

См. также статьи "Эволюция звезд", "Нейтронная звезда", "Белый карлик".

СВЕТИМОСТЬ

Светимость звезды — это мера ее светового излучения, обычно выражаемая в ваттах или по отношению к светимости Солнца, составляющей 4 10 26Вт. Таким образом звезда, светимость которой в 1 00 раз превосходит световое излучение Солнца, испускает свет с мощностью 4 x 10 28Вт.

В 1920 году сэр Артур Эддингтон собрал достаточно обширную информацию о двойных звездах и продемонстрировал, что чем больше масса звезды, тем сильнее ее светимость. Для звезд из Главной последовательности звездная масса изменяется в пределах от 0,1 солнечной в нижней части последовательности, где находятся звезды, сияющие тускло, светимость которых более чем в 10 000 меньше солнечной,

до около 30 солнечных масс в верхней части последовательности, где находятся звезды, светимость которых в 1 млн. раз превосходит солнечную. Эддингтон показал, что для звезд Главной последовательности светимость увеличивается пропорционально кубу массы, [33] иными словами, звезда, масса которой вдвое превосходит массу Солнца, излучает примерно в 8 раз больше света, чем Солнце; звезда, масса которой в 3 раза превосходит массу Солнца, излучает примерно в 27 раз больше света, чем Солнце, а звезда с массой в 10 раз превосходящей массу Солнца излучает примерно в 1000 раз больше света, чем Солнце.

33

Время пребывания звезды на Главной последовательности оценивается формулой tзв = 10 103, где учтено, что светимость звезды Главной последовательности пропорциональна четвертой степени ее массы.

Абсолютная величина звезды определяется ее светимостью. Отношением Эддингтона можно пользоваться для того, чтобы узнать светимость, а следовательно, и абсолютную величину двойных звезд с известной массой, расположенных на неизвестном расстоянии. После 200 парсеков метод параллакса для измерения расстояний перестает действовать, так как угол параллакса оказывается слишком малым. Тем не менее за пределами этого расстояния можно проводить спектральный анализ двойных звезд, чтобы узнать их массу. Зная массу двойной звезды, мы можем определить ее светимость и абсолютную величину, если она принадлежит к Главной последовательности. Затем можно произвести оценку расстояния, пользуясь отношением между абсолютной величиной, расстоянием и видимой величиной. Помимо возможности оценки расстояния до двойных звезд за пределами 200 парсеков, отношение светимость/масса предоставляет граничные условия, которые должны быть объяснены для любой модели структуры звезды и процессов, происходящих в ее недрах.

См. также статьи "Звездная величина", "Звезды 4".

СИЛА ТЯГОТЕНИЯ

Сила тяготения, или сила гравитационного поля массивного объекта, такого, как звезда или планета, определяется как сила тяготения на единицу массы малого объекта, который находится в гравитационном поле звезды или планеты. Величина силы тяготения зависит от расстояния до объекта. К примеру, сила гравитационного поля Земли на высоте 1 000 км над поверхностью планеты составляет 7,5 Н/кг по сравнению с 9,8 Н/кг на уровне поверхности.

Сила гравитационного поля в окрестностях звезды или планеты зависит от массы звезды или планеты и расстояния до ее центра в соответствии с законами Ньютона. Таким образом, сила гравитационного поля на расстоянии r от центра планеты или звезды с массой т равна Gm/r 2. Иными словами, сила тяготения звезды или планеты обратно пропорциональна квадрату расстояния до центра звезды или планеты.

Сила тяготения на поверхности планеты или звезды с радиусом R равняется Gm/R 2

Таким образом, гравитация на поверхности Луны составляет 1/6 от гравитации на поверхности Земли, так как масса Земли в 81 раз больше, а диаметр Земли примерно в 3,7 раза больше Луны (81/3,7 2) и (9,8/5,9 = 1,6). Сила тяготения на поверхности планеты или ее спутника определяет скорость убегания.

См. также статьи "Скорость убегания", "Закон тяготения Ньютона".

СКОРОСТЬ УБЕГАНИЯ

Ракете необходимо набрать скорость примерно 11 км/с, чтобы преодолеть силу земного тяготения и достичь Луны или более далеких планет. Эта минимальная скорость называется скоростью убегания. Если двигатели ракеты недостаточно мощные, она не достигнет скорости убегания, ее кинетическая энергия будет недостаточной для преодоления силы тяготения и она упадет обратно на Землю.

Скорость убегания объекта из точки внутри гравитационного поля определяется как минимальная скорость, необходимая для того, чтобы объект мог удалиться из данной точки в бесконечность.

Можно доказать, что скорость

убегания из точки на расстояние r от центра планеты равна 2gr, где g — значение силы тяготения в данной точке.

На поверхности Земли g = 9,80 Н/кг, а r = 6370 км. Отсюда скорость убегания равна 2x9,80x6370x1000 = 11 200 м/с.

На поверхности Луны g = 1,62 Н/кг, а r = 1740 км, поэтому скорость убегания с лунной поверхности равна 2380 м/с. Благодаря значительно меньшей скорости убегания на поверхности Луны космонавты спускаемого модуля "Орел" с "Аполлона-11", впервые ступившие на поверхность Луны, смогли вернуться на лунную орбиту без помощи мощных ракет-носителей "Сатурн", необходимых для успешного старта с Земли. У Земли, в отличие от Луны, есть атмосфера. Молекулы газа в земной атмосфере движутся со скоростями гораздо меньшими скорости убегания (11,2 км/с), поэтому они не могут выйти за пределы поля земного тяготения. Молекулы газов, выделяющихся на поверхности Луны, имеют скорости, сходные со скоростями молекул в земной атмосфере, так как температура на Луне не намного отличается от земной. Однако молекулы газа на Луне выходят за пределы поля ее тяготения в открытый космос из-за гораздо более низкой скорости убегания.

См. также статью "Сила тяготения".

СОБСТВЕННОЕ ДВИЖЕНИЕ

Звезды в созвездии образуют своеобразный рисунок, который сейчас выглядит так же, как сотни лет назад. Звезды, расположенные в пределах 100 парсеков от Солнца, изменяют свое положение за 6 месяцев, а затем возвращаются обратно за следующие 6 месяцев. Этот эффект возникает из-за параллакса, который обусловлен движением Земли вокруг Солнца. Однако некоторые звезды изменяют свое положение на фоне неподвижного звездного неба за период, исчисляемый годами. Этот эффект называется собственным движением и обусловлен движением звезды по отношению к Солнцу и ее ближайшим соседям.

Наиболее характерным примером является звезда Барнарда в созвездии Змееносца, изменяющая свое положение со скоростью примерно 0,3° за 100 лет. [34] Этот красный карлик девятой звездной величины, расположенный всего лишь в 6 световых годах от Солнца, движется в космосе со скоростью более 160 км/с. Если бы звезда Барнарда находилась на расстоянии 600 световых лет, ее собственное движение было бы гораздо менее заметным и составляло бы 0,003° за 100 лет. Ясно, что звезда, не выказывающая признаков собственного движения, расположена слишком далеко, чтобы изменять свое положение в созвездии для наблюдателя с Земли, хотя она может двигаться быстрее, чем звезда Барнарда. Движение таких звезд становится заметным лишь через многие сотни или тысячи лет.

34

За 200 лет звезда Барнарда проходит дугу в 0,5°, то есть видимый поперечник Луны, за что звезду прозвали "летящей", поскольку это наибольшее из известные собственные движений.

Собственное движение звезды используется для вычисления скорости и направления звезды по отношению к Солнцу. Эти параметры можно определить, если измерить радиальную скорость звезды (расстояние в угловых секундах, пройденное по отношению к Солнцу) и ее тангенциальную скорость (расстояние в угловых секундах, перпендикулярное к линии зрения).

Радиальная скорость измеряется на основе доплеровского смещения в спектре звезды, тангенциальная — вычисляется путем умножения расстояния до звезды на ее собственное движение в радианах в секунду (где 1 радиан = 180/n градусов). Знание скорости и направления движения звезд по отношению к Солнцу, позволило вычислить собственную скорость и направление движения Солнца: примерно 4,2 астрономической единицы в год, или 20 км за секунду, по направлению к созвездиям Лиры и Геркулеса.

См. также статьи "Созвездия 1", "Дистанционные измерения 1", "Спектр оптический".

СОЗВЕЗДИЯ 1: ВСТУПЛЕНИЕ

Созвездия, которые мы привыкли видеть на картах звездного неба, представляют собой произвольные группы звезд, выделенные тысячи лет назад древнегреческими астрономами. Другие древние цивилизации тоже составляли карты небосвода в форме созвездий, но 88 созвездий, обозначенных в современных звездных атласах, определились в Древней Греции. На самом деле в ночном небе две звезды, которые кажутся очень близко расположенными, могут находиться на большем расстоянии друг от друга, чем от Земли. Кажущаяся близость возникает из-за того, что они находятся почти в одном и том же направлении от наблюдателя, но в действительности их разделяет огромное расстояние, если только они не являются двойными звездами.

Поделиться:
Популярные книги

Барон Дубов

Карелин Сергей Витальевич
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов

Аргумент барона Бронина 4

Ковальчук Олег Валентинович
4. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 4

Надуй щеки! Том 7

Вишневский Сергей Викторович
7. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 7

Новый Рал

Северный Лис
1. Рал!
Фантастика:
фэнтези
попаданцы
5.70
рейтинг книги
Новый Рал

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Зубы Дракона

Синклер Эптон Билл
3. Ланни Бэдд
Проза:
историческая проза
5.00
рейтинг книги
Зубы Дракона

В осаде

Кетлинская Вера Казимировна
Проза:
военная проза
советская классическая проза
5.00
рейтинг книги
В осаде

От океана до степи

Стариков Антон
3. Игра в жизнь
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
От океана до степи

Игра со Зверем

Алексина Алёна
Фантастика:
фэнтези
6.25
рейтинг книги
Игра со Зверем

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Адвокат Империи 7

Карелин Сергей Витальевич
7. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 7

Избранное. Компиляция. Книги 1-11

Пулман Филип
Фантастика:
фэнтези
героическая фантастика
5.00
рейтинг книги
Избранное. Компиляция. Книги 1-11

Полное собрание сочинений в 15 томах. Том 1. Дневники - 1939

Чернышевский Николай Гаврилович
Чернышевский, Николай Гаврилович. Полное собрание сочинений в 15 томах
Проза:
русская классическая проза
5.00
рейтинг книги
Полное собрание сочинений в 15 томах. Том 1. Дневники - 1939

Наследник павшего дома. Том II

Вайс Александр
2. Расколотый мир [Вайс]
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том II