Чтение онлайн

на главную - закладки

Жанры

120 практических задач
Шрифт:

```python

# Скрытый слой с функцией активации 'tanh'

model = models.Sequential

model.add(layers.Dense(512, activation='tanh', input_shape=(28 * 28,)))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность

на тестовых данных с активацией tanh: {test_acc}")

```

3. Использование другого оптимизатора:

```python

# Оптимизатор 'SGD'

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='sgd',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность на тестовых данных с оптимизатором SGD: {test_acc}")

```

Дополнительные методы предобработки данных и регуляризации

1. Регуляризация Dropout:

```python

# Модель с Dropout

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность на тестовых данных с Dropout: {test_acc}")

```

2. Стандартизация данных:

```python

from sklearn.preprocessing import StandardScaler

# Стандартизация данных

scaler = StandardScaler

train_images_scaled = scaler.fit_transform(train_images)

test_images_scaled = scaler.transform(test_images)

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images_scaled, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images_scaled, test_labels)

print(f"Точность на тестовых данных со стандартизацией: {test_acc}")

```

Эти дополнительные шаги помогут вам лучше понять поведение модели и улучшить её производительность за счёт оптимизации различных параметров и методов предобработки данных.

2.

Улучшение модели с использованием регуляризации и dropout

– Задача: Повышение точности классификации.

Регуляризация и Dropout – это мощные методы, которые помогают улучшить обобщающую способность модели и предотвращают переобучение. Регуляризация добавляет штраф за сложные модели, уменьшая значения весов, а Dropout отключает случайный набор нейронов в процессе обучения, что снижает зависимость между нейронами.

Регуляризация L2

Регуляризация L2 добавляет штраф за большие веса к функции потерь, что помогает предотвратить переобучение.

```python

import tensorflow as tf

from tensorflow.keras import layers, models, regularizers

import numpy as np

import matplotlib.pyplot as plt

# Загрузка и предобработка данных

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data

train_images = train_images / 255.0

test_images = test_images / 255.0

train_images = train_images.reshape((60000, 28 * 28))

test_images = test_images.reshape((10000, 28 * 28))

# Модель с регуляризацией L2

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,), kernel_regularizer=regularizers.l2(0.001)))

model.add(layers.Dense(10, activation='softmax'))

# Компиляция модели

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

# Обучение модели

model.fit(train_images, train_labels, epochs=5, batch_size=128)

# Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность на тестовых данных с регуляризацией L2: {test_acc}")

```

Dropout

Dropout случайным образом отключает нейроны в процессе обучения, что снижает вероятность переобучения.

```python

# Модель с Dropout

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dropout(0.5)) # Dropout слой с вероятностью 0.5

model.add(layers.Dense(10, activation='softmax'))

# Компиляция модели

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

# Обучение модели

model.fit(train_images, train_labels, epochs=5, batch_size=128)

# Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels)

Поделиться:
Популярные книги

Эволюционер из трущоб. Том 7

Панарин Антон
7. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 7

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Цусима — знамение конца русской истории. Скрываемые причины общеизвестных событий. Военно-историческое расследование. Том II

Галенин Борис Глебович
Научно-образовательная:
военная история
5.00
рейтинг книги
Цусима — знамение конца русской истории. Скрываемые причины общеизвестных событий. Военно-историческое расследование. Том II

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

Новый Рал 10

Северный Лис
10. Рал!
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Новый Рал 10

Бестужев. Служба Государевой Безопасности. Книга четвертая

Измайлов Сергей
4. Граф Бестужев
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга четвертая

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Боевой маг. Трилогия

Бадей Сергей
114. В одном томе
Фантастика:
фэнтези
9.27
рейтинг книги
Боевой маг. Трилогия

Сердце для стража

Каменистый Артем
5. Девятый
Фантастика:
фэнтези
боевая фантастика
9.20
рейтинг книги
Сердце для стража

Тайны затерянных звезд. Том 1

Лекс Эл
1. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 1

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я