Чтение онлайн

на главную - закладки

Жанры

120 практических задач
Шрифт:

```python

# Скрытый слой с функцией активации 'tanh'

model = models.Sequential

model.add(layers.Dense(512, activation='tanh', input_shape=(28 * 28,)))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность

на тестовых данных с активацией tanh: {test_acc}")

```

3. Использование другого оптимизатора:

```python

# Оптимизатор 'SGD'

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='sgd',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность на тестовых данных с оптимизатором SGD: {test_acc}")

```

Дополнительные методы предобработки данных и регуляризации

1. Регуляризация Dropout:

```python

# Модель с Dropout

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность на тестовых данных с Dropout: {test_acc}")

```

2. Стандартизация данных:

```python

from sklearn.preprocessing import StandardScaler

# Стандартизация данных

scaler = StandardScaler

train_images_scaled = scaler.fit_transform(train_images)

test_images_scaled = scaler.transform(test_images)

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images_scaled, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images_scaled, test_labels)

print(f"Точность на тестовых данных со стандартизацией: {test_acc}")

```

Эти дополнительные шаги помогут вам лучше понять поведение модели и улучшить её производительность за счёт оптимизации различных параметров и методов предобработки данных.

2.

Улучшение модели с использованием регуляризации и dropout

– Задача: Повышение точности классификации.

Регуляризация и Dropout – это мощные методы, которые помогают улучшить обобщающую способность модели и предотвращают переобучение. Регуляризация добавляет штраф за сложные модели, уменьшая значения весов, а Dropout отключает случайный набор нейронов в процессе обучения, что снижает зависимость между нейронами.

Регуляризация L2

Регуляризация L2 добавляет штраф за большие веса к функции потерь, что помогает предотвратить переобучение.

```python

import tensorflow as tf

from tensorflow.keras import layers, models, regularizers

import numpy as np

import matplotlib.pyplot as plt

# Загрузка и предобработка данных

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data

train_images = train_images / 255.0

test_images = test_images / 255.0

train_images = train_images.reshape((60000, 28 * 28))

test_images = test_images.reshape((10000, 28 * 28))

# Модель с регуляризацией L2

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,), kernel_regularizer=regularizers.l2(0.001)))

model.add(layers.Dense(10, activation='softmax'))

# Компиляция модели

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

# Обучение модели

model.fit(train_images, train_labels, epochs=5, batch_size=128)

# Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность на тестовых данных с регуляризацией L2: {test_acc}")

```

Dropout

Dropout случайным образом отключает нейроны в процессе обучения, что снижает вероятность переобучения.

```python

# Модель с Dropout

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dropout(0.5)) # Dropout слой с вероятностью 0.5

model.add(layers.Dense(10, activation='softmax'))

# Компиляция модели

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

# Обучение модели

model.fit(train_images, train_labels, epochs=5, batch_size=128)

# Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels)

Поделиться:
Популярные книги

Черный дембель. Часть 3

Федин Андрей Анатольевич
3. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 3

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Очкарик 3

Афанасьев Семён
3. Очкарик
Фантастика:
фэнтези
5.75
рейтинг книги
Очкарик 3

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит

Бастард

Майерс Александр
1. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард

Кодекс Крови. Книга ХIV

Борзых М.
14. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIV

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас

Имя нам Легион. Том 11

Дорничев Дмитрий
11. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 11