Чтение онлайн

на главную - закладки

Жанры

120 практических задач
Шрифт:

# Нормализация данных

scaler = MinMaxScaler(feature_range=(0, 1))

scaled_prices = scaler.fit_transform(prices)

# Создание последовательностей для обучения модели

def create_sequences(data, sequence_length):

sequences = []

targets = []

for i in range(len(data) – sequence_length):

sequences.append(data[i:i + sequence_length])

targets.append(data[i + sequence_length])

return np.array(sequences), np.array(targets)

sequence_length = 60 # 60 дней

X, y = create_sequences(scaled_prices, sequence_length)

#

Разделение данных на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)

# Шаг 3: Построение модели RNN

model = models.Sequential

model.add(layers.LSTM(50, return_sequences=True, input_shape=(sequence_length, 1)))

model.add(layers.LSTM(50, return_sequences=False))

model.add(layers.Dense(25))

model.add(layers.Dense(1))

# Шаг 4: Компиляция и обучение модели

model.compile(optimizer='adam', loss='mean_squared_error')

history = model.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

# Шаг 5: Оценка модели

predictions = model.predict(X_test)

predictions = scaler.inverse_transform(predictions)

# Визуализация результатов

plt.figure(figsize=(10, 6))

plt.plot(data.index[:len(data) – len(y_test)], scaler.inverse_transform(scaled_prices[:len(scaled_prices) – len(y_test)]), color='blue', label='Исторические данные')

plt.plot(data.index[len(data) – len(y_test):], scaler.inverse_transform(scaled_prices[len(scaled_prices) – len(y_test):]), color='orange', label='Истинные значения')

plt.plot(data.index[len(data) – len(y_test):], predictions, color='red', label='Прогнозы')

plt.xlabel('Дата')

plt.ylabel('Цена акции')

plt.legend

plt.show

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки, включая TensorFlow, Keras, pandas и matplotlib.

2. Подготовка данных: Загружаются данные о ценах акций из CSV файла и нормализуются с помощью MinMaxScaler. Создаются последовательности для обучения модели.

3. Построение модели RNN: Модель строится с использованием двух LSTM слоев. Первый слой LSTM возвращает последовательность, которая передается следующему слою. Второй слой LSTM возвращает конечный выход, который подается на полносвязные слои для получения прогноза.

4. Компиляция и обучение модели: Модель компилируется с использованием оптимизатора Adam и функции потерь mean_squared_error. Затем модель обучается на обучающей выборке.

5. Оценка и тестирование модели: Прогнозы модели сравниваются с реальными данными, и результаты визуализируются с помощью графика.

Этот подход может быть расширен и улучшен, например, путем настройки гиперпараметров модели или добавления дополнительных слоев для повышения точности

прогнозов.

Построение модели RNN

Использование двух LSTM слоев

Для анализа временных рядов и прогнозирования цен на акции мы будем использовать два слоя LSTM. LSTM (Long Short-Term Memory) слои являются разновидностью рекуррентных нейронных сетей, специально разработанных для запоминания долгосрочных зависимостей в последовательных данных. В отличие от обычных RNN, которые могут страдать от проблем затухающих градиентов, LSTM могут эффективно обучаться на долгосрочных зависимостях.

Первый слой LSTM

Первый слой LSTM принимает последовательность данных на вход и возвращает последовательность, которая будет передана следующему слою. Возвращение последовательности (return_sequences=True) необходимо, чтобы каждый временной шаг предыдущего слоя был передан на вход следующего слоя LSTM. Это позволяет следующему слою LSTM дополнительно обрабатывать временные зависимости.

```python

model.add(layers.LSTM(50, return_sequences=True, input_shape=(sequence_length, 1)))

```

– 50 нейронов: Это количество нейронов в первом слое LSTM. Число нейронов определяет способность сети к обучению сложным паттернам.

–return_sequences=True: Указывает, что слой должен возвращать полную последовательность выходов для каждого временного шага, а не только последний выход.

– input_shape=(sequence_length, 1): Определяет форму входных данных, где `sequence_length` – это длина последовательности (например, 60 дней), а `1` – это количество признаков (в данном случае, только одно значение цены закрытия).

Второй слой LSTM

Второй слой LSTM принимает последовательность от первого слоя и возвращает конечный выход для всей последовательности. Здесь параметр `return_sequences` установлен в `False`, что означает, что слой будет возвращать только последний выходной элемент последовательности.

```python

model.add(layers.LSTM(50, return_sequences=False))

```

– 50 нейронов: Количество нейронов в втором слое LSTM, аналогично первому слою.

– return_sequences=False: Указывает, что слой должен возвращать только последний выход, который будет использоваться для прогнозирования.

Полносвязные слои

После обработки данных слоями LSTM, выходной вектор передается полносвязным слоям для окончательной классификации или регрессии. Полносвязные слои обеспечивают соединение каждого нейрона предыдущего слоя с каждым нейроном текущего слоя, что позволяет сети обучаться сложным нелинейным зависимостям.

```python

model.add(layers.Dense(25))

model.add(layers.Dense(1))

```

– Первый полносвязный слой:

– 25 нейронов: Полносвязный слой с 25 нейронами. Этот слой может использоваться для дополнительного обучения сложным паттернам в данных.

Поделиться:
Популярные книги

Бастард Императора. Том 13

Орлов Андрей Юрьевич
13. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 13

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Ваше Сиятельство 10

Моури Эрли
10. Ваше Сиятельство
Фантастика:
боевая фантастика
технофэнтези
фэнтези
эпическая фантастика
5.00
рейтинг книги
Ваше Сиятельство 10

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Наследник жаждет титул

Тарс Элиан
4. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник жаждет титул

Неправильный диверсант Забабашкин

Арх Максим
4. Неправильный солдат Забабашкин
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный диверсант Забабашкин

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Изменяющий-Механик. Компиляция. Книги 1-18

Усманов Хайдарали
Собрание сочинений
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Изменяющий-Механик. Компиляция. Книги 1-18

Воронцов. Перезагрузка. Книга 3

Тарасов Ник
3. Воронцов. Перезагрузка
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
6.00
рейтинг книги
Воронцов. Перезагрузка. Книга 3

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Специалист по нечисти

Билик Дмитрий Александрович
2. Бедовый
Фантастика:
юмористическая фантастика
городское фэнтези
мистика
5.00
рейтинг книги
Специалист по нечисти

Первый среди равных. Книга IX

Бор Жорж
9. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга IX

Последний натиск на восток ч. 2

Чайка Дмитрий
7. Третий Рим
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Последний натиск на восток ч. 2

Маленькие Песцовые радости

Видум Инди
5. Под знаком Песца
Фантастика:
альтернативная история
аниме
6.80
рейтинг книги
Маленькие Песцовые радости