Чтение онлайн

на главную - закладки

Жанры

120 практических задач
Шрифт:

Построение нейронной сети для анализа тональности отзывов

1. Подготовка данных

Процесс подготовки данных включает:

– Загрузку набора данных отзывов с размеченными тональностями (позитивная, негативная, нейтральная).

– Предобработку текстов (удаление стоп-слов, лемматизация и т.д.).

– Преобразование текста в числовой формат с использованием векторизации (например, TF-IDF или векторизация слов).

2. Построение модели с использованием LSTM

Пример

архитектуры модели на основе LSTM:

```python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Embedding, Bidirectional, Dropout

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

# Пример данных (данные нужно подставить под ваши)

texts = ["Этот фильм очень хорош!", "Я не люблю этот продукт", "Нейтральный отзыв здесь"]

labels = ["позитивный", "негативный", "нейтральный"]

# Преобразование меток в числовой формат

label_encoder = LabelEncoder

labels_encoded = label_encoder.fit_transform(labels)

# Векторизация текстовых данных

vectorizer = TfidfVectorizer(max_features=1000)

X = vectorizer.fit_transform(texts).toarray

y = np.array(labels_encoded)

# Разделение данных на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Параметры модели и обучения

max_words = 1000 # максимальное количество слов в словаре

embedding_dim = 100 # размерность векторов слов

lstm_units = 64 # количество нейронов в LSTM слое

# Создание модели

model = Sequential

# Векторное представление слов (Embedding)

model.add(Embedding(max_words, embedding_dim, input_length=X.shape[1]))

# LSTM слой

model.add(LSTM(lstm_units))

# Полносвязный слой

model.add(Dense(1, activation='sigmoid'))

# Компиляция модели

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Вывод архитектуры модели

model.summary

# Обучение модели

model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))

```

Пояснение архитектуры и процесса:

1. Векторное представление слов (Embedding): Embedding слой преобразует каждое слово в вектор фиксированной длины (`embedding_dim`). Это позволяет модели учитывать семантические отношения между словами в контексте анализа тональности.

2. LSTM слой: LSTM слой обрабатывает последовательность слов, учитывая их контекст и последовательность в тексте. Он помогает модели

улавливать долгосрочные зависимости и контекст при анализе текстовых данных.

3. Полносвязный слой: Выходной слой с активацией `sigmoid` используется для задачи бинарной классификации (для определения позитивной или негативной тональности).

4. Компиляция и обучение модели: Модель компилируется с оптимизатором `adam` и функцией потерь `binary_crossentropy`, подходящей для бинарной классификации. В качестве метрики используется `accuracy` для оценки точности классификации.

Преимущества использования LSTM для анализа тональности отзывов

– Учёт контекста: LSTM учитывают контекст и последовательность слов, что особенно полезно для задач анализа тональности текстов, где важно не только наличие отдельных слов, но и их последовательность.

– Обработка переменной длины ввода: LSTM могут обрабатывать тексты разной длины, что делает их удобными для работы с различными типами и объемами текстовых данных.

– Высокая производительность: LSTM часто демонстрируют высокую точность при задачах анализа тональности благодаря способности к улавливанию сложных зависимостей в текстах.

Таким образом, построение нейронной сети на основе LSTM для анализа тональности отзывов представляет собой эффективный подход к задаче классификации текстовых данных с эмоциональной окраской, который можно доработать и оптимизировать в зависимости от конкретных требований и характеристик доступных данных.

26. Построение модели для обнаружения лиц в видео

– Задача: Обнаружение и отслеживание лиц в видео.

Для обнаружения и отслеживания лиц в видео можно использовать глубокие нейронные сети, специально настроенные для работы с видеоданными. Одним из эффективных подходов является использование комбинации детектора лиц на основе сверточных нейронных сетей (CNN) с последующим алгоритмом отслеживания движущихся объектов (например, алгоритмом опорных векторов или методом опорных точек). Давайте рассмотрим основные шаги и архитектуру модели для такой задачи.

Построение модели для обнаружения лиц в видео

1. Детектор лиц на основе CNN

Для начала нам нужно построить модель для обнаружения лиц в кадрах видео. Мы можем использовать предварительно обученную модель, такую как Single Shot MultiBox Detector (SSD) или You Only Look Once (YOLO), которые показывают хорошую производительность в реальном времени.

Пример архитектуры модели SSD для обнаружения лиц:

```python

import tensorflow as tf

from tensorflow.keras.applications import MobileNetV2

Поделиться:
Популярные книги

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Случайная первая. Прокурор и училка

Кистяева Марина
Первые. Случайные. Любимые
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Случайная первая. Прокурор и училка

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Вечный. Книга VI

Рокотов Алексей
6. Вечный
Фантастика:
рпг
фэнтези
5.00
рейтинг книги
Вечный. Книга VI

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Контролер

Семин Никита
3. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Контролер

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!

Квантовый воин: сознание будущего

Кехо Джон
Религия и эзотерика:
эзотерика
6.89
рейтинг книги
Квантовый воин: сознание будущего

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров