Чтение онлайн

на главную - закладки

Жанры

120 практических задач
Шрифт:

30. Построение нейронной сети для генерации реалистичных ландшафтов

– Задача: Генерация изображений ландшафтов с использованием GAN.

Теория генеративно-состязательных сетей (GAN)

Генеративно-состязательные сети (GAN), предложенные Ианом Гудфеллоу в 2014 году, представляют собой мощный метод глубокого обучения, используемый для генерации новых данных на основе имеющихся. GAN состоят из двух нейронных сетей: **генератора**

и **дискриминатора**, которые обучаются одновременно, соревнуясь друг с другом в процессе, известном как «состязательное обучение».

Генератор создает новые данные из случайного шума. Его задача – генерировать данные, которые настолько реалистичны, что дискриминатор не сможет отличить их от настоящих. Генератор берет на вход вектор случайного шума и преобразует его в изображение (или другой тип данных). Он обучается, получая обратную связь от дискриминатора, который указывает, насколько реалистичны сгенерированные данные.

Дискриминатор действует как классификатор, обучаясь отличать реальные данные от сгенерированных. Он принимает на вход как реальные, так и сгенерированные данные и пытается правильно их классифицировать. Обучение дискриминатора направлено на максимизацию вероятности правильной классификации реальных данных и минимизацию вероятности ошибки на сгенерированных данных.

Процесс обучения GAN можно описать как игру с нулевой суммой, где генератор пытается обмануть дискриминатор, а дискриминатор стремится не дать себя обмануть. Цель генератора – минимизировать свою ошибку, а дискриминатора – максимизировать свою точность.

Применение GAN для генерации ландшафтов

Применение GAN для генерации реалистичных ландшафтов включает несколько этапов. Начинается все с подготовки большого набора данных изображений ландшафтов, которые будут использованы для обучения. Эти изображения необходимо нормализовать и преобразовать в формат, пригодный для подачи в нейронные сети.

Далее создаются архитектуры генератора и дискриминатора. Генератор обычно состоит из нескольких полносвязных слоев, за которыми следуют слои развёртки и нормализации, чтобы постепенно преобразовывать случайный вектор в изображение. Дискриминатор, напротив, состоит из свёрточных слоев, которые уменьшают размер изображения и извлекают признаки для классификации.

Обучение GAN требует тщательной настройки гиперпараметров и контроля за балансом между генератором и дискриминатором. Если один из них обучается быстрее другого, это может привести к нестабильности. В процессе обучения модели на каждом этапе оцениваются метрики потерь генератора и дискриминатора, что позволяет следить за прогрессом и при необходимости корректировать параметры.

В конечном итоге, обученная GAN может генерировать новые, ранее невиданные изображения ландшафтов, которые визуально могут быть неотличимы от реальных фотографий. Эти изображения могут быть использованы в различных приложениях, от компьютерных игр и виртуальной

реальности до фильмов и дизайна.

Создание нейронной сети для генерации реалистичных ландшафтов с использованием генеративно-состязательной сети (GAN) включает несколько этапов. Рассмотрим план:

1. Подготовка данных

2. Построение модели GAN

3. Обучение модели

4. Генерация изображений

1. Подготовка данных

Для начала нужно собрать и подготовить набор данных с изображениями ландшафтов. Используем набор данных, например, с сайта Kaggle, или загружаем собственные изображения.

```python

import os

import numpy as np

import matplotlib.pyplot as plt

from PIL import Image

from sklearn.model_selection import train_test_split

# Пусть 'landscapes' – это директория с изображениями

image_dir = 'path_to_landscape_images'

image_size = (128, 128) # Размер изображения для нейронной сети

def load_images(image_dir, image_size):

images = []

for filename in os.listdir(image_dir):

if filename.endswith(".jpg") or filename.endswith(".png"):

img_path = os.path.join(image_dir, filename)

img = Image.open(img_path).resize(image_size)

img = np.array(img)

images.append(img)

return np.array(images)

images = load_images(image_dir, image_size)

images = (images – 127.5) / 127.5 # Нормализация изображений в диапазон [-1, 1]

train_images, test_images = train_test_split(images, test_size=0.2)

```

2. Построение модели GAN

Генеративно-состязательная сеть состоит из двух частей: генератора и дискриминатора.

```python

import tensorflow as tf

from tensorflow.keras import layers

# Генератор

def build_generator:

model = tf.keras.Sequential

model.add(layers.Dense(256, activation='relu', input_shape=(100,)))

model.add(layers.BatchNormalization)

model.add(layers.Dense(512, activation='relu'))

model.add(layers.BatchNormalization)

model.add(layers.Dense(1024, activation='relu'))

model.add(layers.BatchNormalization)

model.add(layers.Dense(np.prod(image_size) * 3, activation='tanh'))

model.add(layers.Reshape((image_size[0], image_size[1], 3)))

return model

# Дискриминатор

def build_discriminator:

model = tf.keras.Sequential

model.add(layers.Flatten(input_shape=image_size + (3,)))

model.add(layers.Dense(512, activation='relu'))

model.add(layers.Dense(256, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

return model

# Сборка модели GAN

generator = build_generator

discriminator = build_discriminator

discriminator.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

gan_input = layers.Input(shape=(100,))

generated_image = generator(gan_input)

discriminator.trainable = False

Поделиться:
Популярные книги

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Тисса горит

Иллеш Бела
Проза:
историческая проза
советская классическая проза
5.00
рейтинг книги
Тисса горит

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Пышка и Герцог

Ордина Ирина
Фантастика:
юмористическое фэнтези
историческое фэнтези
фэнтези
5.00
рейтинг книги
Пышка и Герцог

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Страж Тысячемирья

Земляной Андрей Борисович
5. Страж
Фантастика:
боевая фантастика
альтернативная история
фэнтези
5.00
рейтинг книги
Страж Тысячемирья

Полное собрание сочинений. Том 24

Л.Н. Толстой
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Полное собрание сочинений. Том 24

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4