13,8. В поисках истинного возраста Вселенной и теории всего
Шрифт:
Первым ученым, который применил космологические идеи в попытке понять происхождение химических элементов, стал Георгий Гамов – физик – эмигрант из СССР, в то время работавший в Университете Джорджа Вашингтона в столице США. Получив подтверждение того, что Вселенная непрерывно расширяется – тогда это открытие только было сделано (подробнее см. главу 6 ), – Гамов первым всецело поддержал идею, что она образовалась из исходного плотного и горячего состояния под влиянием того, что мы сегодня называем Большим взрывом. Он предположил, что изначально существовал горячий, плотный газ, состоящий из нейтронов. Эти нестабильные незаряженные частицы легко распадаются на один протон и один электрон, образуя атомы водорода. Если перед Большим взрывом температура и плотность были достаточно высокими, протоны (ядра атомов водорода) могли объединяться попарно (этот процесс называется слиянием ядер), образуя вместо водорода дейтерий (тяжелый водород). Дальнейшие столкновения сформировали ядра гелия, состоящие из двух протонов и двух нейтронов. Гамов поручил аспиранту Ральфу Альферу [12] рассчитать, насколько эффективным мог быть этот процесс, и совместно с ним выяснил, что, хотя получить таким образом гелий действительно несложно, более тяжелые элементы просто не успели бы сформироваться до того, как расширяющаяся Вселенная остыла бы до прекращения процесса слияния ядер. Гамова это не смутило. Никогда не сомневавшийся в своих силах ученый заявил, что его теория объясняет происхождение 99 % видимой Вселенной, так что остальное –
12
Ральф Альфер (1921–2007) – американский космолог; наиболее известен новаторской работой начала 1950-х гг. по теории Большого взрыва, в том числе большого нуклеосинтеза взрыва и предсказаний космического микроволнового фонового излучения. Прим. ред.
Проведенные расчеты легли в основу докторской диссертации Ральфа Альфера и были опубликованы в журнале Physical Review [13] в 1948 году. Неуемный шутник Георгий Гамов решил включить в число авторов своего друга Ганса Бете [14] , поскольку ряд «Альфер, Бете, Гамов» напоминал начало греческого алфавита: альфа, бета, гамма. Альфер был огорчен тем, что ему досталась лишь треть признания за эту важную работу, но повлиять на решение руководителя не мог и утешался тем, что его имя стояло первым. Эту работу и сегодня называют «исследование альфа-бета-гамма». Оно стало ключевым шагом в космологии уже потому, что впервые доказало возможность проведения научных расчетов в рамках теории Большого взрыва. Однако вопрос происхождения всех элементов, помимо водорода и гелия, оставался без ответа.
13
Американский научный журнал, публикующий аспекты теоретических и экспериментальных исследований в области физики. Издается Американским физическим обществом с 1913 года. Прим. ред.
14
Ганс Бете (1906–2005) – американский астрофизик, лауреат Нобелевской премии по физике (1967). Прим. ред.
Неясность с происхождением элементов (ядерным синтезом) стала одной из причин, по которой в том же 1948 году Германом Бонди, Томми Голдом [15] и Фредом Хойлом была выдвинута альтернатива Большому взрыву – теория стационарной Вселенной. В основе их концепции лежала идея, что хотя Вселенная и расширяется (скопления звезд, называемые галактиками, отходят дальше друг от друга), она не образовалась в конкретный момент времени из некоего горячего и плотного состояния, а всегда имела приблизительно нынешний вид. По мере расширения в промежутках между галактиками возникает новая материя в виде атомов водорода, которая затем включается в новые звезды и галактики. Далее внутри звезд происходит ядерный синтез. Этот процесс представляется намного более медленным, чем ядерный синтез, описанный Гамовым и его коллегами в рамках теории Большого взрыва, но, поскольку теория стационарной Вселенной предполагает, что она существует неограниченный период времени, это не проблема. Как мы увидим в дальнейшем, Хойл сделал особенно значительный вклад в разработку понимания ядерного синтеза внутри звезд, и некоторое время в конце 1950-х годов ему удавалось отбрасывать теорию Большого взрыва как ненужную (интересно, что он случайно придумал сам термин «Большой взрыв», рассказывая о нем в радиопередаче ВВС). Однако Хойл обнаружил, что, хотя ядерный синтез внутри звезд действительно объяснял возникновение пресловутого 1 % материи, объяснить происхождение всего гелия во Вселенной с его помощью было невозможно. Для интерпретации всех элементов в видимой Вселенной необходимо было использовать еще и идею ядерного синтеза согласно теории Большого взрыва… Однако мы забегаем вперед.
15
Сэр Герман Бонди (1919–2005) – англо-австрийский математик и космолог. Томас Голд (1920–2004) – астрофизик австрийского происхождения, профессор астрономии Корнелльского университета, член американской Национальной академии наук, а также Лондонского королевского общества. Прим. ред.
Дикке смущала мысль, что вся материя во Вселенной могла быть создана за долю секунды во время Большого взрыва, но ему не казалось правдоподобным и то, что материя создается непрерывно в промежутках между галактиками. Впрочем, существовал еще и третий вариант – так называемая циклическая Вселенная. Согласно этой теории, количество материи во Вселенной остается неизменным, но после фазы расширения наступает фаза сжатия: Вселенная доходит до горячего и плотного состояния, как перед Большим взрывом, и вновь расширяется, возрождаясь, словно Феникс [16] .
16
Модель «пульсирующей Вселенной» Дикке на самом деле несколько сложнее, но, поскольку она оказалась несостоятельной, я не стану углубляться в ее детали.
К 1950-м годам уже было ясно, что в галактиках, подобных нашему Млечному пути, есть два вида звезд, так называемые Население I и Население II. Население II – это старые звезды, содержащие относительно мало тяжелых элементов (астрономы все элементы тяжелее гелия называют металлами). Они почти полностью состоят из водорода и гелия. Население I – это молодые звезды, включающие относительно высокий процент тяжелых элементов («металлов»). Предполагается, что они появились из материи, полученной при распаде предыдущего поколения звезд и обогащенной (или, если угодно, загрязненной) «металлами», – это явное свидетельство ядерного синтеза внутри звезд. Однако, понял Дикке, в рамках модели циклической, или пульсирующей, Вселенной этап сжатия должен был бы оказаться настолько горячим, что все «металлы» вновь распались бы обратно на водород и гелий. Это соображение привело его к мысли, что Вселенная вокруг нас все-таки действительно развилась из исходного горячего и плотного состояния, даже если это был не единственный в истории Большой взрыв. Примерно в 1964 году ученый предложил только что защитившему докторскую диссертацию коллеге Джиму Пиблсу просчитать необходимую для описанных процессов температуру и вероятную температуру остаточного излучения в наши дни. Примерные расчеты Пиблса показали, что сегодня Вселенная должна быть наполнена микроволновым излучением с температурой менее 10 К, и Ролл с Уилкинсоном уже готовились искать это излучение, когда раздался звонок Пензиаса.
Итогом встречи двух групп исследователей стали две работы, опубликованные в одном и том же июльском номере Astrophysical Journal [17] за 1965 год. Первой шла статья Дикке, Пиблса, Ролла и Уилкинсона с изложением теории реликтового излучения раннего периода существования Вселенной. За ней – труд Пензиаса и Вильсона с осторожным названием «Измерение избыточной антенной температуры на частоте 4080 MГц». В нем не упоминалась потенциальная значимость открытия, на нее намекала лишь одна фраза – «возможное объяснение наличия шумов при измерении температуры дано Дикке, Пиблсом, Роллом и Уилкинсоном в совместной статье в этом выпуске». Они пока не были готовы отказаться от идеи стационарной Вселенной! «Мы считали, – рассказывает Вильсон в своей Нобелевской речи, – что результаты наших измерений не зависят от теории и
17
Научный журнал, издаваемый в США, в котором публикуются статьи по астрофизике и астрономии. Прим. ред.
3
См. Чоун.
18
Об этом говорил то ли Пензиас, то ли Вильсон, но я не могу сейчас найти источник.
С момента защиты докторской Ральф Альфер непрерывно думал о Большом взрыве. К тому времени он работал над проверкой очередной гипотезы Гамова с еще одним его протеже, Робертом Херманом. У Георгия Гамова был невероятный, но очень усложняющий жизнь его коллег талант приходить к фундаментальным открытиям на основе неполной или даже полностью неверной информации. В 1948 году его осенила догадка, которую Пензиас впоследствии описал как «некорректную почти во всех детальных предсказаниях», тем не менее она содержала важнейшую истину {4} . Гамов понял, что хотя температура Большого взрыва должна была быть очень высокой, чтобы происходил ядерный синтез, она не могла быть слишком высокой: в противном случае обладающие большой энергией фотоны (частицы света) разрушали бы ядра гелия по мере их образования. Этот фактор накладывает на конец фазы первичного огненного шара, во время которой образовывался гелий, ограничение по температуре примерно в миллиард градусов (109 К) независимо от предшествующих условий. Альфер и Херман проанализировали и уточнили эту идею, скорректировали детали и расширили ее значение, просчитав, что остаточное излучение от этого огненного шара должно до сих пор наполнять Вселенную, имея температуру в несколько кельвинов. Эти результаты были опубликованы в 1948 году в виде краткой заметки в одном из самых читаемых научных журналов – Nature {5} . Ученые пришли к выводу, что «температура Вселенной в настоящее время составляет около 5 К».
4
Нобелевская лекция.
5
За ноябрь 1948 года.
Предположение часто приписывают самому Гамову, но это неверно. Альфер и Херман писали: «Хотя наш добрый друг и коллега Гамов сначала не поверил в значимость, пользу и научную обоснованность нашего предположения о пяти кельвинах и прошло несколько лет, прежде чем оно было принято всерьез, впоследствии он посвятил ему несколько работ» {6} . Георгий Гамов известен также как увлеченный популяризатор науки: он описал эту идею в своих книгах, что и привело к массовому заблуждению, будто он ее и придумал, «эффект апостола Матфея» [19] , как его называли Альфер и Херман. В своей книге «Создание Вселенной» (1952), к примеру, Гамов пишет: «Мы считаем, что нынешняя температура равна 50 градусам Кельвина». Столь сильная неточность характерна для Гамова, но она не могла не заинтриговать образованных читателей. Удивительно, что Дикке и его коллеги до 1964 года не слышали об исследовании Альфера и Хермана, тем более что в 1940-х годах Дикке работал с микроволновым оборудованием. Если бы ему удалось прочесть работу Альфера и Хермана, то, располагая технологиями того времени (и необходимой холодной нагрузкой), он смог бы обнаружить фоновое излучение, а Альфер и Херман получили бы заслуженную славу. Еще более странно то, что и Вильсон, и Уилкинсон утверждали, что их интерес к науке в свое время был вызван книгами Гамова, однако идея фонового излучения почему-то прошла мимо их внимания {7} .
6
См. Ральф Альфер, Роберт Херман, Genesis of the Big Bang.
19
«Ибо всякому имеющему дастся и приумножится, а у неимеющего отнимется и то, что имеет» (Мф. 25:29).
7
См. Чоун.
Разумеется, Гамов, Альфер и Херман были огорчены тем, что столь громкое открытие не связали с их именами: они впервые прочли о нем в передовице New York Times. Последовавшие взаимные обвинения хорошо изложены в работе Джона Мазера и Джона Бослоу, сыгравших в дальнейшем свою роль в изучении реликтового излучения, поэтому нет нужды рассказывать о них здесь {8} . Но, пожалуй, стоит упомянуть о нескольких других упущенных возможностях.
Как я уже рассказывал в книге In Search of the Big Bang («В поисках Большого взрыва»), череда несостоявшихся открытий реликтового излучения тянется в прошлое вплоть до начала 1940-х годов, когда проводились исследования спектров света звезд, проходящего через облака межзвездной материи – смеси газа и пыли. Особенности поглощения этого света, приводящие к линиям в спектре, могут дать представление о температуре этих облаков, и, проведя исследования конкретных свойств молекул циана [20] , астроном Эндрю Маккеллар из Доминьонской астрофизической обсерватории в Канаде пришел к выводу, что эта температура составляет от 2 до 3 К. Этот результат был хорошо известен астрономам, но никому не пришло в голову, что температура облаков была именно такой, потому что она поддерживалась фоновым излучением, словно в очень слабой микроволновке.
8
Джон Мазер и Джон Бослоу, The Very First Light.
20
Бесцветный газ с резким запахом. Прим. ред.
Персонажи моей любимой истории о «недогадливых» ученых – Фред Хойл и Георгий Гамов. В 1956 году Хойл приехал в Ла-Хойю в Калифорнии, где в тот момент проездом находился и Гамов, который катался по округе на своем новеньком белом кадиллаке-кабриолете (очень типично для него). В этот период Гамов, главный защитник идеи Большого взрыва, утверждал, что Вселенная наполнена излучением с температурой около 5 К, а Хойл, основной агитатор за модель стационарной Вселенной, настаивал, что этого излучения не существует. Этим двоим было о чем поговорить. В статье для журнала New Scientist [21] 1981 года Хойл вспоминал:
21
Еженедельный научно-популярный журнал на английском языке; с 1996 года также поддерживается сайт, на котором публикуются современные исследования для широкого круга читателей. Прим. ред.