Чтение онлайн

на главную - закладки

Жанры

13,8. В поисках истинного возраста Вселенной и теории всего
Шрифт:

Иногда мы с Георгием уезжали вдвоем поспорить. Помню, Георгий возил меня по округе на белом кадиллаке, толкуя о своем убеждении, что во Вселенной должно быть реликтовое излучение, а я отвечал ему, что с такой высокой температурой, как он говорит, излучения быть не может, потому что наблюдения над радикалами CH и CN, проведенные Эндрю Маккелларом, установили для подобного фона верхний предел в 3 К. То ли нас слишком разнежил комфорт кадиллака, то ли захватил спор (Георгий говорил, что температура выше 3 К, а я – что 0 К), но, так или иначе, мы упустили свой шанс. ‹…› И видимо, за грехи мои я еще раз точно так же упустил его, обсуждая с Бобом Дикке проблемы теории относительности в 1961 году, во время 20-й итальянской летней школы физики в Варенне. Я явно просто не был готов открыть реликтовое излучение {9} .

9

Перепечатано в сборнике Observing the Universe под ред. Найджела Хенбеста. Оксфорд: Blackwell, 1984.

И все остальные, помимо Пензиаса и Вильсона, тоже не были к этому

готовы! По сути, Гамову, которого «обскакали», некого было винить, кроме самого себя.

К 1964 году даже Хойл начал сомневаться в стационарной модели Вселенной, по крайней мере, в ее простейших принципах. Выяснилось, что внутри звезд не могло образоваться достаточно гелия, и он начал исследовать возможность его появления в другом месте. Возможно, был не один Большой взрыв, а несколько Маленьких взрывов в разных точках Вселенной? Хойл развил эту гипотезу совместно с младшим коллегой Роджером Тайлером [22] . Они совместно просчитали, что подобная последовательность событий должна была повлечь за собой массу фонового излучения; Хойл, конечно, уже знал о работе Альфера и Хермана, но пришел к аналогичному заключению другим путем. Однако даже в 1964 году он не соотнес свои выводы с наблюдениями Маккеллара. В первом варианте подготовленной к печати статьи Хойл и Тайлер предсказывали открытие космического фонового излучения, но Хойл удалил эту часть перед публикацией, хотя Тайлер, как он сам много позже признавался мне, хотел ее оставить.

22

Роджер Тайлер (1929–1997) – британский астроном; внес важный вклад в исследования строения и эволюции звезд, устойчивости плазмы, нуклеогенеза и космологии. Прим. ред.

Ближе всех к открытию реликтового излучения подошли (и тоже не довели дело до конца!) в СССР. Проделав в течение нескольких месяцев огромную работу, отчет о которой вышел в 1964 году, советские ученые сложили, казалось, все части головоломки, не хватило лишь одной. Яков Борисович Зельдович [23] , один из колоссов советской науки, осуществил расчеты, аналогичные тем, что провел коллектив Гамова, и тоже пришел к выводу, что Вселенная должна была начаться с горячего Большого взрыва, оставившего фоновое излучение с температурой в несколько кельвинов. Он даже знал о статье Ома в «Техническом журнале Bell System», но, как мы увидим, неверно интерпретировал выводы автора. Менее известный советский астроном Юрий Смирнов оценил температуру фонового излучения как находящуюся в диапазоне между 1 и 20 К. Отталкиваясь от его расчетов, Андрей Дорошкевич и Игорь Новиков [24] опубликовали статью, в которой отметили, что наилучшим образом подготовленная к обнаружению такого излучения антенна – рупорная антенна на Кроуфордском холме. Почему же советские исследователи не поняли, что Ом уже открыл это излучение? Из-за ошибки в переводе. В статье Ома утверждалось, что измеренная им температура неба составила около 3 К. Это означало, что он вычел все возможные источники радиопомех и что 3 К – это температура оставшегося фона. Однако по случайному совпадению такой же (3 К) была и температура излучения атмосферы, поправку на которую Ом тоже сделал. Советские специалисты ошибочно решили, что именно эти 3 К и остались у Ома после всех предыдущих корректировок, вычли и их и остались ни с чем. В наши дни подобные ошибки понимания легко устранились бы в процессе электронной переписки, но в начале 1960-х годов коммуникация между учеными Советского Союза и Соединенных Штатов была весьма затруднена.

23

Яков Зельдович (1914–1987) – советский физик и физикохимик, академик АН СССР, доктор физико-математических наук, профессор. Трижды Герой Социалистического Труда (1949, 1954, 1956). Прим. ред.

24

Андрей Дорошкевич – советский астрофизик. Игорь Новиков (р. 1935) – российский астрофизик-теоретик и космолог. В середине 1980-х годов сформулировал принцип самосогласованности Новикова, ставший важным вкладом в теорию путешествий во времени. Прим. ред.

Несмотря на все фальстарты и недопонимания, космическое микроволновое фоновое излучение в итоге удалось открыть. В течение последующих десятилетий его изучали все более глубоко, и некоторые плоды этих исследований будут описаны во второй части этой книги. Главное здесь то, что это излучение, обладающее температурой 2,712 К, подтверждает, что Вселенная в таком виде, в каком она нам известна сегодня, имеет конкретное начало, относящееся к конкретной временной точке. Но какой именно точке? Вот здесь-то и начинается самое интересное…

Часть I

Как узнать возраст звезд?

Глава 1

2,898

Предыстория: спектры и природа звезд

В 1835 году философ-позитивист Огюст Конт [25] писал: «Не существует разумного способа, которым мы могли бы когда-либо определить химический состав звезд». Он не знал тогда, что, по сути, первые шаги к этому определению уже предприняты и вскоре после его смерти, в 1857 году, процесс будет завершен.

25

Огюст Конт (1798–1857) – французский философ, социолог, методолог и популяризатор науки, преподаватель Парижского политехникума, основатель школы позитивизма, социальный реформатор, оставивший большое литературное наследие, в том числе шеститомный «Курс позитивной философии» (1830–1842). Прим. ред.

Чтение по линиям

Эти первые шаги были сделаны

в 1802 году, когда Конту было всего четыре года от роду, английским ученым и врачом Уильямом Волластоном [26] . Несмотря на частичную потерю зрения в 1800 году, этот ведущий исследователь того времени смог сделать значительный вклад в оптику. Его открытие 1802 года было сделано во время изучения радужного спектра солнечного луча, пропущенного через узкую щель и стеклянную призму (опыт Исаака Ньютона). Волластон заметил, что между цветами радуги видны темные полосы: он насчитал две в красном спектре, три в зеленом и еще две в диапазоне от голубого до фиолетового. Ученый ошибочно заключил, что это просто зазоры между цветами, и не продолжил исследование феномена. Однако его открытие заинтриговало других исследователей, в особенности немца Йозефа фон Фраунгофера [27] , которому в 1810-х годах удалось добиться намного более детального спектра и обнаружить 574 отдельные темные полоски. Сегодня их известно даже больше, они получили название фраунгоферовых линий. Полоски сосредоточены на коротком отрезке спектра и напоминают штрихкод. Но откуда же они взялись?

26

Уильям Волластон (Уолластон) (1766–1828) – английский ученый, который открыл палладий (1803) и родий (1804), впервые получил (1803) в чистом виде платину. Прим. ред.

27

Йозеф Фраунгофер (1787–1826) – немецкий физик, знаменитый оптик, сын бедного стекольщика, работавший в мастерской отца. Прим. ред.

Отчасти на этот вопрос своими опытами сумели ответить в 1850–1860-х годах немецкие ученые Роберт Бунзен и Густав Кирхгоф [28] . Имя Бунзена известно каждому, кто когда-либо изучал химию, благодаря легендарной бунзеновской горелке, хотя на самом деле придумал ее Майкл Фарадей, а доработал ассистент Бунзена Петер Десага (он использовал имя своего более известного руководителя для продвижения собственной модели устройства). Впрочем, важно, не кто был автором горелки, а что Бунзену и Кирхгофу удалось с ней сделать.

28

Роберт Бунзен (1811–1899) – немецкий химик-экспериментатор. Густав Кирхгоф (1824–1887) – один из великих физиков XIX века. Прим. ред.

В начале 1850-х годов в Гейдельберге провели трубопровод для снабжения горючим угольным газом (метаном) домов и фабрик, а также научных лабораторий при университете. Это вдохновило Бунзена на эксперименты с пресловутой горелкой. Внутри нее кислород строго определенным образом соединяется с угольным газом, продуцируя прозрачный огонь, идеальный в использовании для «реакции в пламени», идентифицирующий вещества по окраске, которую они придают огню. Изначально Бунзен использовал для калибровки своих наблюдений цветные фильтры, но Кирхгоф решил, что точнее будет проводить анализ с помощью спектроскопа. Они совместно создали аппарат с узкой щелью для света, специальным устройством для сужения луча – коллиматором, призмой для преломления луча и получения радужного спектра, а также линзой, похожей на микроскопную, для изучения спектра. Хотя Фраунгофер тоже применял в работе призму и линзу, только здесь впервые все эти компоненты оказались объединены в один инструмент – спектроскоп.

Гейдельбергские исследователи знали, что при помещении в прозрачное пламя бунзеновой горелки разные вещества окрашивают его в разные цвета. Так, натрий делает огонь желтым, а медь – зеленым или голубым. Ученые проанализировали свет пламени с помощью спектроскопа и обнаружили, что каждый элемент при нагревании образует яркие линии на спектре с конкретными длинами волн: натрий в желтой части спектра, медь в зеленой или голубой и так далее. (Желтые линии натрия были известны и Фраунгоферу: с их помощью он проверял оптические свойства стекла и именно поэтому стал изучать солнечный спектр.) Немецкие специалисты вскоре поняли, что четкие линии на спектре образует любой нагретый предмет. Однажды вечером, находясь в своей гейдельбергской лаборатории, они сумели проанализировать свет от крупного пожара в Мангейме, вспыхнувшего на расстоянии 17 км, и обнаружили в зареве признаки наличия стронция и бария.

Спустя несколько дней Бунзен и Кирхгоф гуляли по городу вдоль реки Неккар, обсуждая эксперимент с пожаром. По легенде, Бунзен сказал Кирхгофу примерно следующее: «Если мы смогли узнать, что горело в Мангейме, то наверняка сможем узнать то же и о Солнце. Только вот люди примут нас за сумасшедших фантазеров».

Тем не менее ученые обратили свое внимание на спектр Солнца и выявили, что многие из темных линий, открытых Фраунгофером, находятся в той же части спектра, точно на тех же длинах волн, что и яркие линии, формируемые различными веществами при нагревании в лаборатории. Естественно было предположить, что эти элементы присутствуют во внешнем слое Солнца, но имеют меньшую температуру, чем более глубокие слои, так что при прохождении света изнутри наружу они забирают его часть из спектра на определенных длинах волн, вместо того чтобы добавить к нему яркие линии. Такое понимание происходящего, в частности, сформулировал Кирхгоф. В то время никто не знал, как образуются эти линии. Чтобы понять это, пришлось ждать разработки квантовой теории структуры атома в XX столетии. Но даже без этого знания уже в 1860-х годах удалось выяснить состав Солнца, а в дальнейшем применить тот же принцип для определения того, из чего состоят другие звезды. Утверждают, что, вспомнив тот разговор на берегу реки, Кирхгоф сказал: «Бунзен, так я сумасшедший!» И тот ответил: «Кирхгоф, я тоже!» {10} Открытие Кирхгофа было представлено Прусской академии наук в Берлине 27 октября 1859 года. Сегодня этот день считается началом истории астрофизики (хотя сам термин появился лишь в 1890 году).

10

См. журнал Nature, том 65 (1902): 587.

Поделиться:
Популярные книги

Прогулки с Бесом

Сокольников Лев Валентинович
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Прогулки с Бесом

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Жена фаворита королевы. Посмешище двора

Семина Дия
Фантастика:
фэнтези
5.00
рейтинг книги
Жена фаворита королевы. Посмешище двора

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Возвращение Безумного Бога 2

Тесленок Кирилл Геннадьевич
2. Возвращение Безумного Бога
Фантастика:
попаданцы
рпг
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 2

Санек 4

Седой Василий
4. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 4

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия