400 лет обмана. Математика позволяет заглянуть в прошлое
Шрифт:
ИТАК, В ФУНДАМЕНТЕ РАДИОУГЛЕРОДНОГО ДАТИРОВАНИЯ В НЕЯВНОЙ ФОРМЕ ЛЕЖИТ ВСЕ ТА ЖЕ ОШИБОЧНАЯ СКАЛИГЕРОВСКАЯ ХРОНОЛОГИЯ. Чтобы «отвязать» от нее основы радиоуглеродного датирования, придется опереться лишь на действительно надежно датируемые исторические объекты. Но, как мы теперь понимаем, возраст таких надежных объектов не может быть больше 500–600 лет поскольку они распределены на интервале от нашего времени вниз лишь до XIV века н. э. Таким образом, ВСЮ РАБОТУ КАЛИБРОВКЕ РАДИОУГЛЕРОДНОГО МЕТОДА НУЖНО ПРОДЕЛАТЬ ЗАНОВО. И заранее совсем неясно, к каким результатам придут физики.
«По-видимому, изменения космического излучения происходили и раньше, но ввиду кратковременности значение этих флуктуаций ТРУДНО УЧИТЫВАТЬ. На основании совпадения вычисленного значения удельной активности углерода, а также на основании сходимости возраста морских осадков, определенного независимым друг от друга углеродному и иониевому методам можно считать, что интенсивность космического излучения за последние 35 000 лет была постоянной в пределах
В Америке, то есть в регионах, удаленных от «классической античности», дендрологи Аризонского университета открыли на востоке штата Калифорнии, в районе Белых гор, насаждения сосны остистой (Pinus aristata) возрастом более 4000 Там же удалось найти и сухостой этого же вида деревьев, стоявших мертвыми по несколько тысяч лет [414], с. 6. Считается, что в результате перекрестной датировки, то есть наложения во времени на живые деревья образцов сухих деревьев удалось составить дендрохронологическую шкалу протяженностью в 7117 лет [1431], [1432], [1433]. Однако эта американская дендрохронологическая шкала — даже если она верна — ничем не может помочь европейской и азиатской «античной» дендрохронологии, о чем мы уже рассказали выше.
В [414] на с. 7 приведен график соотношения возрастов, определенных дендрохронологическим и радиоуглеродным методами на основании результатов измерений более 300 образцов. Если считать возраст образца, определенный дендрохронологическим методом, абсолютно достоверным (что, как мы уже говорили, неверно), то максимальная ошибка определения возраста радиоуглеродным методом составляет:
возраст дендрохронологический | возраст радиоуглеродный | ошибка |
300 | 30 | — 270 |
500 | 250 | — 250 |
800 | 900 | +100 |
1500 | 1600 | +100 |
1500 | 1600 | +100 |
1900 | 2100 | +200 |
2700 | 2400 | — 300 |
4000 | 3500 | — 300 |
5000 | 4300 | — 700 |
и далее ошибка возрастает с обратным знаком.
Эти американские данные можно следующим образом интерпретировать. Содержание радиоуглерода в американской сосне остистой по отношению к содержанию радиоуглерода в ней же в настоящее время следующим образом распределялось во времени:
Годы | Содержание радиоуглерода |
1965 | 1 |
1700 | 1 |
1500 | 1,031 |
1200 | 0,988 |
100 | 0,975 |
— 700 | 1,038 |
— 2000 | 1,063 |
— 3000 | 1,100 |
Эти данные опять-таки мало что могут дать для европейской дендрохронологии и европейской радиоуглеродной шкалы. Оказалось, что результаты этого исследования несколько отличны от результатов, полученных на небольшом участке Американского континента, но показывают, что концентрация радиоуглерода в районе 1000 года примерно на 2 % ниже современной [567]. По-видимому, этот вывод относится лишь к какому-то небольшому району в Японии? Изменение обменного резервуара, см. выше пункт б, определяется в основном колебаниями уровня океана. Либби утверждал, что снижение уровня моря на 100 метров уменьшает размеры резервуара на 5 % [986], с. 157. А если при этом за счет понижения температуры, скажем из-за оледенения, уменьшилась концентрация растворенного карбоната, то общее уменьшение углерода в обменном фонде могло доходить до 10 %. Надо отдавать себе отчет в том, что тут речь идет о неких
В отношении скорости перемешивания, см. пункт г, имеющиеся данные несколько противоречивы. Например, Фергюссон на основании исследования радиоактивности годичных колец деревьев (опять-таки небольшого района на земной поверхности) полагает, что перемешивание идет довольно быстро и что среднее время, в течение которого молекула углекислого газа находится в атмосфере до перехода в Другую часть резервуара, составляет не более семи лет [986], С.158. С другой стороны, во время испытаний водородных бомб образовалось около полутонны радиоуглерода, что мало влияет на общую массу радиоуглерода в 60 тонн. Тем не менее в 1959 году активность образцов УВЕЛИЧИЛАСЬ НА 25 %, А К 1963 ГОДУ УВЕЛЧЕНИЕ ДОСТИГЛО ДАЖЕ 30 %. Это свидетельствует в пользу гипотезы МАЛОЙ ПЕРЕМЕШИВАЕМОСТИ.
Полное перемешивание воды в Тихом океане происходит по оценке Зюсса, примерно за 1500 лет, а в Атлантическом океане, по оценкам Э. А. Олсон и У. С. Брекер, — за 750 лет [480], с. 198. Но на перемешивание воды в океане сильно влияет температура. Увеличение скорости перемешивания поверхностных и глубинных вод на 50 % приведет к снижению концентрации радиоуглерода в атмосфере на 2 %.
16.6. Вариация содержания радиоуглерода в живых организмах
ТРЕТЬЯ ГИПОТЕЗА Либби состоит в том, что содержание радиоуглерода в организме ОДНО И ТО ЖЕ ДЛЯ ВСЕХ ОРГАНИЗМОВ ПО ВСЕЙ ЗЕМЛЕ, то есть не зависит, например, от ШИРОТЫ и породы растения. С целью проверить эту гипотезу Андерсон (Чикагский университет), проведя тщательные измерения, получил, что НА САМОМ ДЕЛЕ СОДЕРЖАНИЕ РАДИОУГЛЕРОДА, КАК И СЛЕДОВАЛО ОЖИДАТЬ, КОЛЕБЛЕТСЯ [480], с. 191.
Образцы | Геомагнитная широта | Число распадов в минуту на 1 грамм |
Белая ель (Юкон) | 60 гр. с.ш. | 14,84+-0,30 |
Норвежская ель (Швеция) | 55 гр. с.ш. | 15,37+-0,54 |
Ель обыкновенная (Чикаго) | 53 гр. с.ш. | 14,72+-0,54 |
Ясень (Швейцария) | 49 гр. с.ш. | 15,16+-0,30 |
Листья жимолости (США) | 49 гр. с.ш. | 14,60+-0,30 |
Сосновые ветки (США, 3,6 км над уровнем моря | 44 гр. с.ш. | 15,82+-0,47 |
Вереск (Северная Африка) | 40 гр. с.ш. | 14,47+-0,44 |
Дуб (Палестина) | 34 гр. с.ш. | 15,19+-0,40 |
Неизвестное дерево (Иран) | 28 гр. с.ш. | 15,57+-0,31 |
Ясень манчжурский (Япония) | 26 гр. с.ш. | 14,84+-0,30 |
Неизвестное дерево (Панама) | 20 гр. с.ш. | 15,94+-0,51 |
Древесина «хлорофора эксуельса» (Либерия) | 11 гр. с.ш. | 15,08+-0,34 |
Стеркулия (Боливия, 2,7 км над уровнем моря | 1 гр. с.ш. | 15,47+-0,50 |
Эбеновое дерево (Маршальские острова) | 0 гр. | 14,53+-0,60 |
Неизвестное дерево (Цейлон) | 2 гр. ю.ш. | 15,37+-0,49 |
Эвкалипт (Австралия) | 45 гр. ю.ш. | 16,31+-0,43 |
Тюлений жир (Антарктида) | 65 гр. ю.ш. | 15,69+-0,30 |
Таким образом, современная активность радиоуглерода в зависимости от географического расположения и породы дерева меняется от 14,03 (вереск в Северной Африке) до 16,74 (эвкалипт в Австралии) распада в минуту. Это дает отклонение содержания радиоуглерода от среднего значения на плюс-минус 8,5 %. Либби пишет: «На протяжении 10 лет, прошедших с тех пор, эти данные не были опровергнуты. Исключения составляют лишь районы развития карбонатных пород, где поверхностные воды растворяют и уносят значительное количество древнего углерода и понижают тем самым содержание углерода–14 по сравнению со средним значением, характерным для системы атмосфера — биосфера — океан в планетарном масштабе. Правда, такие случаи встречаются относительно редко (? — Авт.) и легко могут быть учтены» [480].