Чтение онлайн

на главную - закладки

Жанры

А ну-ка, догадайся!
Шрифт:

Дуглас Хофштадтер в своей книге «Гёдель, Эшер, Бах: вечное золотое переплетение» называет такие парадоксы «странными петлями». В его книге приведено множество поразительных примеров странных петель в физике, математике, изобразительном искусстве, литературе и философии.

Крокодил и младенец

Греческие философы любили рассказывать притчу о крокодиле, выхватившем младенца из рук матери.

Крокодил. Съем ли я твоего младенца? Если ты ответишь правильно, я верну

тебе его целым и невредимым.

Мать.О горе мне! Ты съешь моего мальчика.

Крокодил (в смущении).Как мне поступить? Если я отдам тебе младенца, то твой ответ будет неверным. Следовательно, я должен съесть малютку. Отличная идея! Я не отдам тебе его!

Мать.Но ты должен вернуть мне его. Ведь если ты съешь моего мальчика, значит, я ответила правильно и ты должен отдать мне его.

Несчастный крокодил настолько растерялся, что упустил мальчишку. Мать подхватила ненаглядное чадо и была такова.

Крокодил.Жаль! Вот если бы она сказала, что я отдам ей ребенка, то у меня было бы чем полакомиться на обед.

Крокодил оказался перед неразрешимой проблемой: он должен съесть младенца и в то же время вернуть его матери.

Мать оказалась очень умной женщиной. Ведь если бы она сказала, что крокодил собирается вернуть ей младенца, то крокодил мог бы действительно вернуть его или съесть, не впадая при этом в противоречие.

Если бы крокодил вернул младенца матери, то ее утверждение стало бы истинным и крокодил сдержал бы свое слово. С другой стороны, если крокодил достаточно коварен, то он мог бы съесть младенца. Тогда утверждение матери стало бы ложным, и крокодил мог бы считать себя свободным от данного им обещания вернуть матери младенца.

Парадокс Дон Кихота

В романе Сервантеса «Дон Кихот» рассказывается об одном острове, на котором действует удивительный закон. Каждого, проходящего по мосту через реку, судьи подвергают опросу.

Судья.Куда и зачем ты идешь? Тех, кто скажет правду, судьи пропускают, а тех, кто солжет, без всякого снисхождения отправляют на стоящую тут же виселицу и казнят.

Однажды некий человек заявил под присягой, что идет затем, чтобы его вздернули на виселице.

Судьи пришли в не меньшее замешательство, чем крокодил. Если они не повесят этого человека, то это будет означать, что он солгал, и его надлежит повесить.

Если же они повесят его, то он не солгал и его необходимо пропустить.

Чтобы разрешить свои сомнения, судьи отправили человека к губернатору. После долгих размышлений губернатор объявил свое решение.

Губернатор.Любое мое решение нарушило бы закон, поэтому я предпочитаю быть милосердным. Отпустите этого человека. Пусть идет себе

с миром!

Парадокс с повешением приведен в главе 51 второй книги романа Сервантеса «Дон Кихот». Слуга Дон Кихота Санчо Панса становится губернатором острова и при вступлении на свой высокий пост клянется соблюдать все законы. Владелец одного поместья на острове издал закон, по которому всякий, проходящий по некоему мосту, должен объявить под присягой, куда и зачем он следует. Того, кто скажет правду, по закону надлежит пропускать, а того, кто солжет, — отправлять на стоящую неподалеку виселицу. Когда к Санчо Пансо приводят человека, утверждающего, будто он пришел за тем, чтобы быть повешенным, новоявленный губернатор решает казусное дело, сообразуясь с милосердием и здравым смыслом.

Суть парадокса Дон Кихота, обладающего несомненным сходством с парадоксом крокодила и младенца, несколько затемняет неоднозначность утверждения, высказанного тем человеком, который перешел мост. О чем идет речь: о намерении или о будущем событии? Если речь идет о намерении быть повешенным, то человек мог сказать правду (то есть действительно мог хотеть, чтобы его повесили). В этом случае судьи не могли бы отправить его на виселицу, и никакого противоречия при этом бы не возникало.

Если высказанное утверждение понимать во втором смысле, то любое решение судей противоречит закону.

Парадокс брадобрея

Знаменитый парадокс брадобрея был предложен Бертраном Расселом. Прочитайте внимательно объявление, вывешенное владельцем парикмахерской. Кто бреет брадобрея?

Если брадобрей бреется сам, то он принадлежит множеству тех жителей города, кто бреется сам.

Но в объявлении утверждается, что наш брадобрей никогда не бреет тех, кто входит в это множество. Следовательно, наш брадобрей не может брить самого себя.

Если же брадобрея бреет кто-нибудь другой, то он принадлежит к числу тех, кто не бреется сам.

Но в объявлении сказано, что он бреет всех, кто не бреется сам.

Следовательно, никто другой не может брить нашего брадобрея.

Похоже, что его не может брить никто!

Бертран Рассел предложил парадокс брадобрея, чтобы облечь в более наглядную форму знаменитый парадокс, обнаруженный им в теории множеств. Некие математические конструкции приводят к множествам, которые включают себя в качестве одного из своих членов. Например, множество, содержащее все, что не является яблоком, само не является яблоком и, следовательно, должно содержать себя в качестве одного из членов. Рассмотрим теперь множество всех множеств, не содержащих себя в качестве одного из членов. Содержит ли оно себя? Как бы вы ни ответили на этот вопрос, вам не удастся избежать противоречия.

С этим парадоксом связан один из наиболее драматических моментов в истории логики. Знаменитый немецкий логик Готлоб Фреге завершил второй том своих «Оснований арифметики», над которым работал всю жизнь. В этом фундаментальном труде Фреге изложил непротиворечивую теорию множеств, которая могла бы послужить основанием для всей математики. Рукопись находилась уже в типографии, когда Фреге получил от Рассела письмо (дело происходило в 1902 г.), в котором Рассел сообщал об открытом им парадоксе. Теория множеств, развитая Фреге, допускала образование множества всех множеств, которые не содержат себя. Но, как явствовало из письма Рассела, это, казалось бы, не таившее никаких опасностей множество было внутренне противоречивым. Фреге не оставалось ничего другого, как дописать к своему труду краткое приложение, которое начиналось словами:

Поделиться:
Популярные книги

Лучший из худших-2

Дашко Дмитрий Николаевич
2. Лучший из худших
Фантастика:
фэнтези
5.00
рейтинг книги
Лучший из худших-2

Досье Дрездена. Книги 1 - 15

Батчер Джим
Досье Дрездена
Фантастика:
фэнтези
ужасы и мистика
5.00
рейтинг книги
Досье Дрездена. Книги 1 - 15

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Комендант некромантской общаги 2

Леденцовская Анна
2. Мир
Фантастика:
юмористическая фантастика
7.77
рейтинг книги
Комендант некромантской общаги 2

Подземелье

Мордорский Ваня
1. Гоблин
Фантастика:
фэнтези
эпическая фантастика
5.00
рейтинг книги
Подземелье

Одержимый

Поселягин Владимир Геннадьевич
4. Красноармеец
Фантастика:
боевая фантастика
5.00
рейтинг книги
Одержимый

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Реванш. Трилогия

Максимушкин Андрей Владимирович
Фантастика:
альтернативная история
6.73
рейтинг книги
Реванш. Трилогия

Бастард Императора

Орлов Андрей Юрьевич
1. Бастард Императора
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Бастард Императора

Наследие Маозари 4

Панежин Евгений
4. Наследие Маозари
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Наследие Маозари 4

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение