Чтение онлайн

на главную - закладки

Жанры

А ну-ка, догадайся!
Шрифт:

Рассмотрим утверждение парадокса лжеца «Это утверждение ложно». В переводе на теоретико-множественный язык оно звучит так: «Это утверждение есть элемент множества всех ложных утверждений».

Если «это» утверждение действительно принадлежит множеству всех ложных утверждений, то то, о чем оно говорит, — правда и, следовательно, оно не может принадлежать множеству всех ложных утверждений.

Если же утверждение парадокса лжеца не принадлежит множеству ложных утверждений, то то, о чем оно говорит, — неправда и, следовательно, оно должно принадлежать множеству всех ложных утверждений.

У каждого семантического парадокса существует теоретико-множественный аналог, а у каждого теоретико-множественного парадокса существует семантический аналог.

Метаязыки

Чтобы

разрешить семантические парадоксы, используют специальный прием — так называемые метаязыки. Утверждения об окружающем мире, например «Яблоки красные» или «Яблоки синие», делаются на объектном языке. Утверждения об истинностных значениях следует делать на метаязыке.

В этом примере никакого парадокса нет и не может быть, так как утверждение А, записанное, по предположению, на метаязыке, относится к значению истинности утверждения В, записанного на объектном языке.

А каким образом мы могли бы говорить о значениях истинности утверждений, записанных на метаязыке? Для этого нам пришлось бы подняться на еще одну ступень и ввести метаязык. Каждая ступень бесконечной лестницы является метаязыком по отношению к предыдущей ступени (расположенной ниже) и объектным языком по отношению к следующей ступени (расположенной выше).

Понятие «метаязык» было введено польским математиком Альфредом Тарским. На нижней ступени лестницы находятся утверждения об объектах, например «У Марса две луны». Такие слова, как «истина» и «ложь», не входят в язык низшей ступени. Чтобы говорить об истинности или ложности утверждений, высказанных на языке низшей степени, мы должны воспользоваться метаязыком — следующей, более высокой ступенью лестницы. Метаязык включает в себя весь объектный язык, но не исчерпывается им. Метаязык «богаче» объектного языка, поскольку позволяет говорить об истинности и ложности утверждений, записанных на объектном языке. Любимый пример Тарского: «Снег белый» — утверждение из объектного языка, «Утверждение «Снег белый» истинно» — утверждение из метаязыка.

Можно ли говорить об истинности или ложности утверждений из метаязыка? Можно, но лишь поднявшись на третью ступень лестницы и говоря на более высоком метаязыке, позволяющем высказывать утверждения об истинности или ложности утверждений всех языков более низких ступеней.

Каждая ступень лестницы является объектным языком по отношению к ступени, расположенной непосредственно над ней. Каждая ступень, за исключением самой нижней, является метаязыком по отношению к ступени, расположенной непосредственно под ней. Лестница простирается вверх сколь угодно далеко.

Примеры утверждений на языках первых четырех ступеней.

A. Сумма внутренних углов любого треугольника равна 180°.

B. Утверждение Аистинно.

C. Утверждение Вистинно.

D. Утверждение Систинно.

Язык на уровне Апозволяет формулировать теоремы о геометрических объектах. Геометрический текст, содержащий доказательства теорем, написан на метаязыке уровня В. Книги по теории доказательств написаны на языке уровня С. К счастью, математикам редко приходится подниматься выше уровня С.

Теоретическая

нескончаемость, или бесконечность, лестницы в занимательной форме рассмотрена в статье Льюиса Кэрролла «Что черепаха сказала Ахиллу» [4]

Теория типов

Бесконечная иерархия, аналогичная лестнице метаязыков, позволяет избавиться от теоретико-множественных парадоксов. Ни одно множество не может быть членом самого себя или любого множества более низкого типа. Брадобрей, астролог, робот и каталог просто не существуют.

4

Кэрролл Л.История с узелками, — М.; Мир, 1973, с. 368–372.

У лестницы метаязыков Тарского существует теоретико-множественный аналог — теория типов Бертрана Рассела. Не вдаваясь в технические подробности, можно сказать, что эта теория, устанавливая среди множеств иерархию по типам, исключает высказывания о принадлежности или непринадлежности множества самому себе. Тем самым исключаются противоречивые множества. Они просто-напросто вычеркиваются из системы. Если вы неукоснительно следуете правилам теории типов, то у вас нет разумного способа определить эти множества, чреватые противоречиями. Ситуация, возникающая при этом в теории множеств, аналогична той, с которой мы сталкиваемся в семантике, когда утверждаем, что такие утверждения, как парадокс лжеца, просто «не являются утверждениями», поскольку не соответствуют правилам построения «законных» утверждений.

Не один год понадобился Бертрану Расселу, чтобы разработать теорию типов. Вот что он пишет в книге «Мое философское развитие»:

Закончив «Принципы математики», я предпринял решительную попытку найти решение парадоксов. Их существование я рассматривал почти как личный вызов и, если потребовалось бы, посвятил бы всю оставшуюся жизнь попыткам разрешить их. Однако по двум причинам такая приверженность идее избавления от парадоксов казалась мне нежелательной. Во-первых, вся проблема представлялась мне тривиальной… Во-вторых, сколько я ни пытался, мне не удавалось ни на шаг продвинуться в ее решении. Почти все 1903 и 1904 гг. ушли на борьбу с парадоксами, но без сколько-нибудь ощутимых признаков успеха.

Предсказание свами [5]

Может ли снами видеть будущее в своем хрустальном шаре? Предсказание будущего приводит к необычному логическому парадоксу нового типа.

Однажды Свами поспорил со своей десятилетней дочерью Сью.

Сью.Ты большой обманщик, папа. На самом деле ты не можешь предсказывать будущего.

Свами.Нет, могу!

Сью.Нет, не можешь, и я могу доказать это.

5

Свами— наставник.

Поделиться:
Популярные книги

Ликвидатор на службе Империи. Том 2

Бор Жорж
2. Ликвидатор на службе Империи
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ликвидатор на службе Империи. Том 2

Кодекс Крови. Книга ХVIII

Борзых М.
18. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХVIII

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Дворянин

Злотников Роман Валерьевич
2. Император и трубочист
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Дворянин

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Неудержимый. Книга XXIX

Боярский Андрей
29. Неудержимый
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Неудержимый. Книга XXIX

Тринадцатый VIII

NikL
8. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый VIII

Эволюционер из трущоб. Том 7

Панарин Антон
7. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 7

Локки 7. Потомок бога

Решетов Евгений Валерьевич
7. Локки
Фантастика:
аниме
эпическая фантастика
фэнтези
5.00
рейтинг книги
Локки 7. Потомок бога

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

На границе империй. Том 10. Часть 6

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 6

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10