Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Шрифт:
Среди других экспонатов я приметил на полке у Хоппа нечто, выглядевшее как мельница для перца, и поинтересовался, что это такое. Хопп ответил, что это курта. Курта — черный цилиндр размером с ладонь, с заводной ручкой сверху — представляет собой уникальное изобретение: это единственный в своем роде механический карманный калькулятор. Чтобы показать, как он работает, Хопп сначала провернул ручку на один оборот — обнулил показания машинки. Числа задаются изменением расположения ползунков, перемещающихся в пазах боковой поверхности курты. Хопп выставил число 346 и один раз повернул ручку. Затем он поставил ползунки в положение, соответствующее числу 217. После еще одного поворота ручки сумма этих двух чисел, равная 563, появилась в окошке в верхней части механизма. Хопп сказал, что курта может еще вычитать, умножать, делить и выполнять другие математические
И хотя курта — это не логарифмическая линейка, воплощенная в ней изобретательность сделала ее объектом, милым сердцу собирателей вычислительных устройств. Стоило мне только увидеть этот калькулятор в деле, как я сразу понял — он лучший в коллекции Хоппа. Начнем с того, что курта и правда почти буквально «перемалывала» числа — их в нее «засыпали», а результат появлялся после вращения ручки. Хотя «перемалывала» — пожалуй, слишком грубое слово для устройства, внутри которого запрятаны 600 механических деталей, работающих с точностью швейцарских часов.
С куртой связана весьма драматическая история. Ее изобретатель Курт Херцштарк придумал прототип этого устройства в концентрационном лагере Бухенвальд в конце Второй мировой войны. Херцштарка арестовали за «пособничество евреям» и за «связь с еврейскими женщинами». Лагерное начальство, узнав, что Херцштарк — гениальный инженер, велело ему продолжать работу над его вычислительной машиной. Херцштарку сказали, что, если устройство будет работать, его преподнесут Гитлеру в качестве подарка, и жизнь Херцштарка будет спасена. Когда с окончанием войны Херцштарк получил свободу, он покинул лагерь, имея при себе практически законченные чертежи. После нескольких попыток найти инвестора он в конце концов сумел убедить князя Лихтенштейна, и именно там, в Лихтенштейне, в 1948 году была выпущена первая курта. До начала 1970-х годов фабрика в этом княжестве произвела около 150 000 штук механических калькуляторов. Херцштарк прожил в Лихтенштейне до самой своей смерти. Он скончался в 1988 году в возрасте 86 лет.
В течение 1950-х и 1960-х годов курта оставалась единственным в мире карманным калькулятором, способным давать точные ответы. Но и курта, и логарифмическая линейка немедленно отправились в утиль, как только появился электронный карманный калькулятор.
Логарифмическая линейка первенство удерживала в течение трех сотен лет. До тех пор, пока в 1972 году компания «Hewlett-Packard» выпустила свое устройство НР-35, которое рекламировалось как «высокоточная переносная электронная логарифмическая линейка». Однако оно сильно отличалось от обычной логарифмической линейки. Приборчик этот был величиной с небольшую книгу, с красным жидкокристаллическим дисплеем, 35 кнопками и переключателем Вкл/Выкл. Уже через несколько лет стало практически невозможно купить обычную логарифмическую линейку, разве что подержанную, да и интересовала она лишь только редких коллекционеров.
За одним исключением. В современном мире есть место, где логарифмические линейки по-прежнему широко применяются. Это кабина пилота самолета. Круговая авиационная логарифмическая линейка называется навигационной линейкой. Она измеряет скорость, расстояние, время, расход топлива, температуру и плотность воздуха. Чтобы сдать экзамен на пилота, надо в совершенстве овладеть мастерством расчетов с помощью навигационной линейки — что может показаться исключительно странным в наш век продвинутых компьютерных технологий, когда кабина пилотов напичкана самыми разнообразными современными приборами. Навигационные логарифмические линейки нужны потому, что пилоты должны уметь летать и на маленьких самолетах, где нет бортовых компьютеров. Тем не менее нередко и пилоты, летающие даже на реактивных самолетах, предпочитают пользоваться навигационной линейкой. Имея ее под рукой, можно очень быстро получить оценки всех необходимых величин, а кроме того, нагляднее представлять себе численные параметры полета. Благодаря тому что пилоты умеют обращаться с вычислительным устройством начала XVII века, авиаполеты становятся безопаснее.
Возвращаясь к алгебре, рассмотрим неразлучного спутника школьной математики: системы уравнений.Задача, как правило, состоит в том, чтобы решить систему из двух уравнений, в каждое из которых входят две переменные. Например,
у= x,
у= 3 x– 2.
Здесь требуется решить оба уравнения, что мы сейчас и исполним. Подставив значение переменной, взятое из одного уравнения, в другое, найдем решения. В данном
x =3 x– 2,
что дает
2 x= 2.
Итак, x= 1 и у =1.
Всякое уравнение, содержащее две переменных, можно представить себе наглядно, на графике. Проведем горизонтальную прямую и пересекающую ее вертикальную прямую. Будем говорить, что горизонтальная прямая — это ось x,а вертикальная — ось у.Оси пересекаются в точке 0. Положение любой точки на плоскости можно тогда определить, указав соответствующие ей значения на каждой оси. Местоположение точки, определяемое числами ( a, b), задается как пересечение вертикальной прямой, проходящей через точку ана оси x,и горизонтальной прямой, проходящей через точку bна оси у.
Для всякого уравнения, содержащего xи у,те точки ( x, у), в которых значения xи уудовлетворяют заданному уравнению, представляют собой некоторый график. Например, каждая из точек (0, 0), (1, 1), (2, 2) и (3, 3) удовлетворяет нашему первому уравнению, у= x.Если мы нанесем все эти точки на график, то станет ясно, что уравнение у= xпорождает прямую линию. Подобным же образом можно изобразить второе из приведенных выше уравнений, у= 3 х– 2. Выбирая значение xи затем выясняя, чему равен у,мы устанавливаем, что точки (0, -2), (1, 1), (2, 4) и (3, 7) лежат на линии, описываемой данным уравнением. Это тоже прямая, пересекающая ось ув точке -2:
Если мы наложим одну из наших прямых на другую, то увидим, что они пересекаются в точке (1, 1). Таким образом, мы видим, что решение системы уравнений — это координаты точки пересечения двух прямых линий, описываемых этими уравнениями.
Мысль о том, что уравнения можно выразить в виде линий, представляла собой радикальное новшество, предложенное Декартом в его книге «La Geometrie». Введение Декартовой системы координат носило революционный характер, потому что в ней соединились до того никак не связанные области: алгебра и геометрия. Впервые оказалось, что два различных раздела знания не только связаны между собой, но и являются альтернативными представлениями друг друга. Одна из задач, которые ставил перед собой Декарт, состояла в том, чтобы сделать и алгебру, и геометрию доступнее для понимания, потому что, как он заметил, взятые по отдельности, «они простираются лишь в области весьма абстрактных вещей, с виду не представляющих никакого практического интереса, — геометрия всегда настолько привязана к исследованию фигур, что понимания в ней невозможно добиться без чрезвычайного напряжения воображения, в то время как алгебра до такой степени подчинена всяческим правилам и числам, что превратилась в запутанное и замутненное искусство, которое подчиняет себе ум, вместо того чтобы быть наукой, способствующей развитию ума». Декарт не питал особой склонности к перенапряжению. Он вошел в историю как любитель позднего вставания, прославившись тем, что предпочитал при всякой возможности оставаться в кровати до полудня.
Выполненное Декартом соединение алгебры и геометрии — это мощный пример взаимодействия между абстрактными идеями и пространственным воображением, и это взаимодействие стало с тех пор постоянным сюжетом в математике. Многие из наиболее впечатляющих доказательств в алгебре — включая доказательство Великой теоремы Ферма — опираются на геометрию. Подобным же образом, получив алгебраическое описание, геометрические задачи, история которых составляет до двух тысяч лет, зажили новой жизнью. Одно из наиболее восхитительных свойств математики как раз и выражается в том, как различные с виду предметы оказываются связаны между собой, что приводит к новым неожиданным открытиям.