Чтение онлайн

на главную - закладки

Жанры

Алхимия человеческого духа
Шрифт:

Греки утверждали, что арифметика является «матерью всей остальной математики». И именно нечи-словая геометрия опровергла представление о том, что Вселенную можно описать при помощи одних лишь целых чисел. Этот урок древних также не был понят в полной мере (виду смягчающих для древних обстоя-тельств), и современная математика не приняла его во внимание. К нечисловой геометрии в математиче-ских кругах в общем сегодня относятся чуть ли не с пренебрежением. Их представители, подобно Декарту (отцу современной науки), произвольным образом приняли постулат о том, что всю логику можно выра-зить при помощи средств алгебраической теории и теории чисел. Далее, опять-таки подобно Декарту, они приняли и возвели в ранг святыни постулат о том, что все формы можно описать при помощи прямого угла и нескольких других формул прямолинейной

геометрии (т.е. теоремы Пифагора). Говоря короче, изучение феноменов Вселенной они проводят исключительно при помощи аппарата математики прямых линий.

И этому есть причина. Она заключается в простом арифметическом утверждении N + 1 (где N — лю-бое число), выражающем основополагающее предположение арифметики, которое звучит так: «К любому числу можно прибавить единицу». Если вы начнете с 1, прибавите еще 1, и так далее до бесконечности, что вы получите? Вы получите арифметическую прямую 1 + 1 + 1 + 1… а также соответствие между нечисло-вой геометрией прямолинейной структуры формы и линейным увеличением в теории чисел. Отсюда выте-кают все остальные математические дисциплины. Следует отдавать себе отчет в том, что, какие бы экзоти-ческие случаи ни возникали для описания перед современной математикой, они все же, по своей сути, яв-ляются арифметическими, геометрическими или представляют собой комбинацию того и другого. Из этого исключений нет.

Наша современная математика, при помощи которой мы отправили человека на Луну, по своей сути не изменилась с тех дней, когда люди сражались друг с другом на колесницах медным оружием! Прочную и окостеневшую традицию нашей математики энергично защищают от попыток поставить под сомнение правомерность повсеместного употребления прямолинейного подхода, и это вопреки отсутствию каких бы то ни было свидетельств того, что миром природных форм правят линейные закономерности. Например, что касается утверждения «свет естественным образом распространяется по прямой», то мы просто пред-полагаем это, пренебрегая тем, что естественной траекторией его движения может быть дуга, которую мы на данном этапе пока не можем обнаружить. Почему свет должен отличаться от всего остального в приро-де? Математические круги отстаивают традиционные взгляды и предписания, которые превратились в не-что вроде культа усопших, почитаемых выше основополагающих принципов объективности и единства. Они думают, что поскольку единство невозможно обнаружить исходя из принципов линейности, то, следо-вательно, его не существует. Они скорее скажут, что единства и истины в абсолютных терминах не сущест-вует, чем допустят, что их математика может ошибаться. Этим в логике они закладывают фундамент, о ко-торый разбиваются все другие устремления человека. Это поразительный случай коллективной спеси.

Какое значение имеет выбор типа линий (прямая или дуга)? В настоящее время математика допуска-ет легкое равенство и отрицает иерархичность. Это равенство позволяет описывать криволинейные формы в терминах прямых (число? — классический пример этому). Там, где греки надеялись, что это равенство истинно, современная математика решает заставить Вселенную пойти на уступки эгоистическому жела-нию вбить круглый кол в квадратное отверстие, да еще чтобы при этом не было никакие зазоров. В сущно-сти, в этом и состоит основная задача математического счисления.

Что же определяет, в абсолютном смысле, свойства прямых и кривых линий? Прямая линия — это «ряд одинаковых точек, которые никак не связаны с точками, находящимися вне этого ряда». Кривая линия — это «ряд точек, связанных с точкой (точками), находящейся (находящимися) вне этого ряда». Это очевидно. Нарисуйте кривую линию, и вы увидите, что значит «внешнее» и «внутреннее». Далее, если сде-лать сечение пополам двух любых сегментов этой кривой прямыми линиями, то эти секущие пересекутся в центре (центрах) этой линии. Таким образом, для прямой линии необходимо по крайней мере две точки, а в кривой, по сути, присутствуют три. Третья точка (т.е. центр) не всегда присутствует явно, но ее легко найти. Это похоже на секрет, который кривая желает сохранить.

Дальнейшие логические заключения неизбежно показывают, что прямые линии всегда и бесспорно являются линиями низшего порядка по отношению к кругу (статическая геометрия). Это то, чего так упорно старался не допустить Евклид в свою геометрию (которой мы,

конечно же, пользуемся и по сей день, за исключением случаев, когда она выражается при помощи арифметики [аналитическая геометрия]). Я нашел, по крайней мере, 15 явных ошибок в евклидовой геометрии, которые в настоящее время либо за-малчиваются для широкого читателя по соображениям цензуры, либо вообще «неизвестны». Они постоян-но указывают на то, что Евклид разработал лишь последовательность предписаний. Евклидова геометрия была попыткой спасти арифметику греков, но если он и заслуживает похвалы за свои старания спасти нау-ку о числах, то математиков наших дней следует призвать к ответу за принадлежность к культу почитания человеческой математики, которая навязывается в качестве «объективной».

Опять-таки, какое значение имеет тип линий? Поскольку с легкостью можно показать, что все пря-молинейные структуры будут только фигурами низшего порядка по отношению к некой константе круга, двухточечный элемент нашего рассмотрения никогда и никоим волшебным образом не превратится в трехточечный. Это означает, что, какое бы количество сторон ни было у «правильного многоугольника, вписанного в окружность» (это просто фигура, составленная из одинаковых треугольников, где центр ок-ружности является вершинной точкой равнобедренных треугольников, образованных этим центром, и точ-ками касания сторон многоугольника с окружностью), никакая из его сторон никогда не пересечет окруж-ность больше чем в двух точках, а следовательно, его периметр никогда нельзя будет считать дугой, длина которой будет точно равна длине окружности; а следовательно, в лучшем случае, он будет лишь прибли-жением к истинной длине окружности (2?R).

Другой способ получить величину? — вычислить ее при помощи теории чисел («матери» всей мате-матики). Применяя последовательный ряд вычислений, мы аппроксимировали величину? с невероятным количеством знаков после десятичной запятой. При помощи теории чисел мы провозгласили доказанным, что? «является иррациональным и трансцендентным числом», т.е. что оно «представляет собой бесконеч-ный ряд неповторяющихся чисел». Но мы уверены, что с точки зрения этой логики априорные допущения фундаментальной теории чисел истинны. По сути дела, мы говорим, что? «иррационально и трансцен-дентно», потому что «к любому числу всегда можно прибавить единицу».

Это дает вам небольшое введение в положение дел в современной математике. Но даже за самыми непостижимыми заявлениями, которые раздаются с высот математического Олимпа, лежат некоторые очень простые принципы, которые до сих пор так и остаются неразрешенными и исчезновения которых желали бы многие. Таким образом, современные математики стоят перед выбором: сказать, что «абсолют-ной истины не существует», или утверждать, что «для того, чтобы математика была жизнеспособной, необ-ходимо лишь, чтобы она была логически самодостаточной», или, когда не проходит и это, — заявить, что «математика — как шахматы: правила менять нельзя». Это их священные мантры, которые они самозабвен-но твердят всякий раз, когда сталкиваются с противоречиями. Является ли наша математика ошибочной по своему существу? Полагаю, что да. Многие математики втайне считают, что она ошибочна. Многие при-писывают некую «неизвестную ошибку» тому или иному разделу устоявшейся теории. Намного меньше высказывающих мнение о том, что ошибку можно найти в пренебрежении рыцарей картезианского ордена к предостережению Евклида, высказанному им с самого начала по поводу изучения абсолютных величин (книги 6?13). Думаю, я одинок в своем утверждении, что ошибка еще в древнейшие времена вкралась в ма-тематические концепции пифагорейцев, которые (хотя это и отрицают) в ходу и по сей день: в частности, в предположении «к любому числу всегда можно прибавить единицу».

К любому числу всегда можно прибавить единицу

Пифагорейцы были группой последователей учителя по имени Пифагор. Они были первыми, кто ис-кал «научно обоснованную теорию чисел». Этим они хотели изгнать все человеческие предрассудки из теории чисел и измерить глубины Вселенной в терминах самой Вселенной. Это им также почти удалось. Если бы у них было представление о нуле и они умели бы складывать числа в столбик (это присутствует в западной математике только последние 600 лет), то смогли бы вывести теорию чисел, в которой числа в действительности отражали бы то, что существует во Вселенной.

Поделиться:
Популярные книги

Мой личный враг

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.07
рейтинг книги
Мой личный враг

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Имя нам Легион. Том 9

Дорничев Дмитрий
9. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 9

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Возлюби болезнь свою

Синельников Валерий Владимирович
Научно-образовательная:
психология
7.71
рейтинг книги
Возлюби болезнь свою

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Божья коровка 2

Дроздов Анатолий Федорович
2. Божья коровка
Фантастика:
альтернативная история
5.00
рейтинг книги
Божья коровка 2

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая