Чтение онлайн

на главную - закладки

Жанры

Архитекторы компьютерного мира
Шрифт:

Хотя этих знаний было недостаточно, чтобы превратиться в истинного джентльмена, такая тяжелая работа дисциплинировала его и способствовала классическому стилю созревавшей булевой прозы.

Известно, что его отец оставил школу после трех лет обучения, и в то же время удивительно, что Буль получил раннее математическое образование от своего отца, который был самоучкой в этой области.

В возрасте 16 лет для Буля стало необходимостью начать трудовую жизнь, чтобы помочь своим родителям. Получив работу «младшего учителя», или ассистента учителя в начальной школе, Буль должен был

провести 4 года, преподавая в двух различных школах.

Всегда думая о перспективе занимаемого места в жизни, Буль начал рассматривать несколько путей, открытых для него. Его первоначальное преподавание было всегда на уровне, однако он не считал это профессией, хотя она и была почетна. Буль стал священнослужителем.

Когда он не преподавал, то проводил время в серьезном изучении французского, немецкого и итальянского языков, в подготовке к церковной жизни. Неудачи, бедность его семейства еще раз разрушили планы Буля; родители убеждали его отказаться от религиозной жизни ввиду их ухудшающегося финансового положения.

Отзывчивый, как всегда, к советам родителей, Буль решил открыть собственную школу. Ему было 20 лет. Преподавая, Буль считал себя также студентом и приступил к изучению полного курса высшей математики. Он проштудировал «Математические начала» Ньютона, «Аналитическую механику» Лагранжа, труды Лапласа и других авторов.

Свои математические исследования Буль начал с разработки операторных методов анализа и теории дифференциальных уравнений, а затем подобно де Моргану, с которым к этому времени подружился, занялся математической логикой.

В своей первой основной работе «Математический анализ логики, являющийся опытом исчисления дедуктивного рассуждения» 1847 года Буль отчетливо показал так называемое количественное истолкование объектов логики и необходимость нового подхода к решению проблем логики.

Этот подход требовал изменения и расширения символического языка алгебры: выбора символики, операций и законов, определяющих эти операции и отражающих специфику объектов исследования, — т. е. по существу создания нового исчисления. Буль писал: «Те, кто знаком с настоящим состоянием символической алгебры, отдают себе отчет в том, что обоснованность процессов анализа зависит не от интерпретации используемых символов, а только от законов их комбинирования. Каждая интерпретация, сохраняющая предложенные отношения, равно допустима, и подобный процесс анализа может, таким образом, при одной интерпретации представлять решение вопроса, связанного со свойствами чисел, при другой — решение геометрической задачи и при третьей — решение проблемы динамики или статики. Необходимо подчеркнуть фундаментальность этого принципа».

С публикацией «Математического анализа…» взгляды и блестящая интуиция этого тихого, простого человека стали ясны его друзьям — математикам, которые советовали ему поступить в Кембридж, для получения общепринятого математического образования.

Буль неохотно отверг эти предложения, потому что его родные полностью существовали на его заработок. Не жалуясь на особенности своего обучения от случая к случаю, Буль, наконец, получил небольшой перерыв в 1849 году, когда его назначили профессором математики

в недавно открытом Королевском колледже.

Это назначение позволило ему посвятить больше времени «Законам мышления…» — второй его основной работе, которую он непрерывно оттачивал и усовершенствовал в течение еще 5 лет, до публикации в 1854 году.

Как писал Буль в первом параграфе книги: «Цель данного трактата:

исследовать фундаментальные законы тех действий разума, с помощью которых выполняются рассуждения;

выразить их в символическом языке исчислений и на этой основе создать науку логики и построить метод;

сделать этот метод непосредственно основой общего метода для выражения теории вероятностей;

наконец, получить различные элементы истины;

оценить в рамках решения этих вопросов некоторое вероятное сообщение».

И далее: «Теперь фактически исследования следующих страниц показывают логику, в практическом аспекте, как систему процессов, проведенных при помощи символов, имеющих определенную интерпретацию и подчиненных законам, основанным на этой единственной интерпретации. Но в то же самое время они показывают эти законы как идентичные по форме с законами общих символов алгебры, с одним единственным дополнением, viz».

Другими словами, в общей алгебре не выполняется, например: что каждый х тождественно равен своему квадрату — но это истина в булевой алгебре. Согласно Булю, х2 = х для любого х в его системе. В числовой системе это уравнение имеет единственное решение «О» и «1». В этом заключается важность двоичной системы для современных компьютеров, логические части которых эффективно реализуют двоичные операции.

Кроме логики, булева алгебра имеет два других важных применения. Булева алгебра применяется в натуральной алгебре. Принимая также во внимание идею «количества элементов» в множестве, булева алгебра стала основой для теории вероятностей.

Несмотря на большое значение булевой алгебры во многих других областях математики, необычайная работа Буля в течение многих лет считалась странностью. Как и Бэббидж, Буль был человеком, опередившим свое время. Это произошло раньше, чем Альфред Уайтхед и Бертран Рассел опубликовали свой трехтомник «Принципы математики» (1910–1913), в котором рассматривались вопросы формальной логики.

Заслуживает внимания и то, что на достижения Буля частично опирались математические открытия, к тому времени появившиеся в Англии, в том числе и идеи Бэббиджа. Математики обратили внимание на идею Бэббиджа о математических операциях и величинах, использующихся в них. Идея стала возможной благодаря группе британских специалистов в области алгебры, к которым принадлежал и Буль.

Буль продемонстрировал, что логика может сводиться к очень простым алгебраическим системам, после чего для Бэббиджа и его последователей стало возможным создание механических устройств, которые могли решать необходимые логические задачи.

Поделиться:
Популярные книги

Владеющий

Злобин Михаил
2. Пророк Дьявола
Фантастика:
фэнтези
8.50
рейтинг книги
Владеющий

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Низший

Михайлов Дем Алексеевич
1. Низший!
Фантастика:
боевая фантастика
7.90
рейтинг книги
Низший

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Привет из Загса. Милый, ты не потерял кольцо?

Лисавчук Елена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Привет из Загса. Милый, ты не потерял кольцо?

Контрактер Душ

Шмаков Алексей Семенович
1. Контрактер Душ
Фантастика:
фэнтези
попаданцы
аниме
5.20
рейтинг книги
Контрактер Душ

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Хозяин Теней 2

Петров Максим Николаевич
2. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней 2

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3