Чтение онлайн

на главную - закладки

Жанры

Атака на неизведанное
Шрифт:

Морские геологи также не имеют прямого доступа к объектам своих исследований. Представление о форме морского дна дают промеры глубин лотом. На смену промеров лотом, требующих большой затраты времени и позволяющих вести только дискретные определения глубин, пришли промеры эхолотные. Основу эхолота создал в 1912 г. немецкий физик Бем. В 1922 г. американское судно проложило первый эхолотный профиль через северную Атлантику, а в 1925–1927 гг., в процессе океанографических исследований, «Метеор» впервые выполнил обширные промерные работы с помощью эхолота.

Эхолот измеряет время, которое требуется посланному звуковому импульсу для того, чтобы пройти расстояние от судна до морского дна и обратно. Это время пропорционально

глубине, так что, если известна скорость звука в воде, можно рассчитать расстояние «судно — морское дно». С помощью специальных эхограмм можно определять не только глубину: звуковые волны проникают также и в мягкие напластования дна, что позволяет судить о мощности осадочной толщи, т. е. отложении на морском дне. Некоторые виды эхограмм показывают распределение планктона или косяков рыб и являются важным вспомогательным средством при изучении биологических основ рыболовства.

Дночерпатели, работающие подобно грейферам землечерпалки, захватывают только самые верхние слои морского дна, в то время как геологические трубки проникают в него глубже. Они представляют собой опускаемые с борта судна длинные трубки, которые вонзаются в дно либо под действием собственного веса, либо с помощью разрывного заряда или вибрационного устройства. С помощью такого рода приборов, вес которых иногда превышает 2 т, на «Витязе» удалось поднять с морского дна колонку грунта длиной свыше 30 м.

Наконец, о строении морского дна позволяют судить геофизические методы. При сейсмических методах, например, в определенном районе возбуждаются сейсмические волны, которые после отражения различными поверхностями морского дна регистрируются в другом районе. О структуре строения морского дна дают представление также и измерения гравитационного и магнитного полей Земли или тепловых потоков, идущих из земных недр.

Подводная фотография и подводное телевидение дополняют океанографические методы исследований. Главной проблемой подводной фотографии является создание оптимальных искусственных источников освещения. Вследствие сильного поглощения и рассеяния солнечного излучения в воде естественного светового поля даже на небольших глубинах недостаточно для фотографирования. Еще в 1893 г. французский зоолог Бутан, который сделал первые снимки под водой с помощью плоской камеры на глубине 10 м в Средиземном море, применял осветительную вспышку, а позднее — угольные дуговые лампы.

Все возрастающее распространение в океанологии получает и подводное телевидение, в особенности для наблюдений за морским дном. Телевизионная техника была впервые применена под водой в 1951 г. при поисках подводной лодки, утонувшей в устье Темзы. В настоящее время существуют установки, которые позволяют вести передачи по кабелю длиной несколько километров.

Наряду с исследовательскими судами в последние годы появились автоматические измерительные буи, ведущие метеорологические и океанологические наблюдения и передающие данные в центры управления. С развитием и эксплуатацией этих буев связаны многочисленные технические, экономические, а также юридические проблемы, которые до сих пор еще далеко не все решены.

Как к самим измерительным датчикам, так и к устройствам для обработки и передачи данных предъявляются следующие основные требования: небольшие размеры, малое потребление энергии и высокая надежность.

Измерения, полученные на буе, должны передаваться наземным станциям. Это в общем возможно, исключая применение подводных кабелей в прибрежных районах, только с помощью радиосвязи. Система передачи должна быть пригодна для автоматической работы и действовать один-два года без технического обслуживания. Следует также учитывать возможность использования искусственных спутников в качестве радиорелейных станций при связи между буем и Землей.

Наряду с конструированием соответствующих

измерительных и передаточных устройств проблемой является обеспечение их энергией. Не все источники энергии пригодны для использования в море. Кроме того, снабжение автономных буев энергией должно отличаться высокой надежностью и исключать техническое обслуживание. Источники энергии должны иметь небольшие размеры и ничтожный вес. Большое значение придается уже испытанным в космосе генераторам, превращающем химическую энергию, вырабатываемую содержащимися в воде веществами при взаимодействии их с оксигенами, в энергию электрическую. Важная роль принадлежит термоэлектрическим генераторам изотопов, которые в электрическую энергию преобразуют энергию тепловую, высвобождающуюся при радиоактивном распаде некоторых элементов, например стронция. Сейчас имеются экспериментальные установки, в качестве источников питания использующие кинетическую энергию морских волн.

В настоящее время существуют прототипы различных видов измерительных буев, которые устанавливают на якорь даже на больших глубинах. Перспективные модели буев смогут выполнять измерения, дрейфуя в заданных морских районах. Особое место среди заякоренных измерительных буев занимает разработанный в 1967 г. в США тяжелый «Монстрбуй» весом свыше 100 т, представляющий собой поплавок в виде диска диаметром более 13 м. «Монстрбуй» может измерять 14 метеорологических и океанологических характеристик и передавать их на расстояния до 4000 км. Расходы на подобный буй составляют около 500 тыс. долларов. Однако имеются измерительные буи весом только 90 кг, которые могут сбрасываться и с вертолетов. Эти буи измеряют пять характеристик на поверхности моря и передают данные на расстояние 100–150 км.

В проектируемой океанической сети станций в глобальных масштабах измерительные буи будут иметь большое значение в качестве стационарных станций. Разумеется, это потребует высоких затрат. Точки зрения на наиболее рациональное размещение буев значительно расходятся. В глобальной сети наиболее оптимальной считается сторона квадрата примерно в 400 км. Это значит, что на площади 160 000 км 2(что больше территории ГДР) разместилась бы одна буйковая станция. Для сравнения следует упомянуть, что в ГДР на 2500 км 2приходится одна метеорологическая станция.

Французский лабораторный буй, стоящий на якоре к югу от Марселя на глубине 2400 м

Между исследовательскими судами и автоматическими измерительными буями займут место заранее отведенные в предусмотренные районы плавучие средства с приборами и экипажами для их обслуживания. Некоторые из этих носителей приборов должны находиться в вертикальном положении, но могут, подобно лихтеру, буксироваться и горизонтально. Затем в выбранном месте назначения они наполняются водой и выпрямляются. Дрейфуя или стоя на якоре, они являются идеальными измерительными платформами для исследований в пограничном слое океан — атмосфера и в верхних слоях моря. Даже при сильном волнении на море они ведут себя спокойно. Так, в заливе Аляска такие носители американской конструкции при волнах высотой 11 м имели вертикальные перемещения менее 10 см. Особенно известнымистали американская инструментальная станция FLIP и созданный в 1964 г. по инициативе французского исследователя Кусто лабораторный буй. Буй имеет длину 66 м, из которых 56 м находятся под водой. При водоизмещении 250 т он позволяет жить и работать в нем четырем сотрудникам.

Поделиться:
Популярные книги

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Газлайтер. Том 17

Володин Григорий Григорьевич
17. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 17

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Привет из Загса. Милый, ты не потерял кольцо?

Лисавчук Елена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Привет из Загса. Милый, ты не потерял кольцо?

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Офицер

Земляной Андрей Борисович
1. Офицер
Фантастика:
боевая фантастика
7.21
рейтинг книги
Офицер

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Ох уж этот Мин Джин Хо 4

Кронос Александр
4. Мин Джин Хо
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 4

Студиозус

Шмаков Алексей Семенович
3. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин