Атмосфера должна быть чистой. Применение статистических методов при аттестации источников эмиссии и оценке качества атмосферного воздуха

на главную - закладки

Жанры

Поделиться:

Атмосфера должна быть чистой. Применение статистических методов при аттестации источников эмиссии и оценке качества атмосферного воздуха

Шрифт:

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ТЕРМИНОВ.

As – асимметрия;

Аj – множитель (применяется при подготовке исходных данных к обработке на ЭВМ;

допустимая концентрация j- го компонента в источнике, г/м3 (определяется из установленных уровней ПДВj и ПДСj и расходных характеристик м3/сек);

Еs – эксцесс;

ЗВ – загрязняющее химическое вещество;

Кj – коэффициент суммирования;

КУ – контрольный фиксированный уровень концентрации ЗВ, равен ПДК или долям ПДК и относится

к соответствующему времени осреднения;

ВЭЗК – верхнее экстремальное значение концентрации ЗВ;

ПДВ – предельно – допустимый выброс ЗВ, г/сек;

ФИВ – фактическая интенсивность выброса ЗВ, г/сек;

– валовый выброс ЗВ, т/год; Ки/год;

СНВ – сверхнормативный выброс ЗВ, т/год;

ПДК – предельно – допустимая концентрация, мг/м3, г/м3;

DXj; DZ – дисперсия случайной величины, обозначенной как Xj и Z;

i – порядковый номер измерения во временном ряду или индекс порядковой статистики i = 1……n;

KХ – корреляционная функция;

MXj; MZj; MY – математическое ожидание случайных величин, обозначенных Xj; Zj; Y;

MeX; MeY – медианы вариационных рядов дискретных случайных величин Х и Y, отнесенных ко времени осреднения ;

mg –геометрическое среднее;

n, N – число измерений за контрольный период времени;

р – вероятность, 0<= р<=1;

r XnXm – взаимный коэффициент корреляции между случайными величинами хn и xm;

R – размах вариации;

S, Sj – эмпирический стандарт;

Sg – геометрический стандарт;

SX, SY – эмпирические стандарты случайных величин X и Y , отнесенных ко времени осреднения ;

t – время;

Т – отчетный период, максимальное время осреднения;

– параметр Т – распределения Стьюдента, = n – 1;

V – коэффициент вариации;

Z, Zmax – число стандартных отклонений от медианы до выбранной варианты и до ожидаемого экстремального значения;

– обозначение варианта;

– нормированные варианты;

– обозначение осредненной концентрации;

– уровень доверительной вероятности;

– точность оценки параметра;

– число степеней свободы;

– время одного цикла измерения;

– время осреднения, (время отбора пробы);

– нормированная корреляционная функция;

– параметр «ХИ – квадрат», к = n – 3.\

ВВЕДЕНИЕ

Получение объективной информации о качестве окружающей природной среды, а также степени антропогенного влияния является одной из важнейших задач науки и техники в области охраны природы и рационального использования природных ресурсов.

Достаточно планомерное изучение воздействия промышленных предприятий на окружающую среду и методов ее комплексной оценки началось сравнительно недавно. Во многом это объясняется сложностью и многообразием процессов формирования полей концентрации загрязняющих веществ (ЗВ) в объектах окружающей среды и разной степенью изученности этих процессов, кроме

того, эти процессы происходят в различных временных и пространственных масштабах, а также многообразием параметров источников загрязнения. Поэтому достоверная оценка антропогенного влияния может быть выполнена на основе комплексного анализа процессов загрязнения, которые, таким образом, характеризуются очень большим числом переменных.

Тем не менее, информация об антропогенном влиянии уже сейчас имеет большое значение для поисков путей оптимизации взаимодействия хозяйственной деятельности и окружающей природной среды. С развитием производства продуктов нефтехимии, цветных и драгоценных металлов, минеральных удобрений, редких и рассеянных элементов, машиностроения, а также предприятий ТЭК, ядерной энергетики и ОПК появляется все больше научно-исследовательских центров и промышленных предприятий, которые могут быть потенциальными источниками загрязнения природной среды.

К основным источникам загрязнения относятся производственные предприятия, добывающие и перерабатывающие сырье и продукты с применением высокотоксичных химических веществ.

При эксплуатации предприятий ядерно-топливного цикла может происходить загрязнение окружающей среды радиоактивными и нерадиоактивными веществами, которые могут находиться в различных агрегатных состояниях. Источники выбросов и сбросов могут быть как организованные, например, дымовые трубы так и неорганизованные: хвостохранилища, загрязненные участки территории промышленных площадок, элементы оборудования, транспортные магистрали, отвалы. Перечисленные объекты могут являться источниками загрязнения воды и воздуха, вследствие ветровой и водной эрозии.

Очевидно, что кардинальным решением задачи снижения интенсивности выбросов и сбросов ЗВ является разработка и внедрение безотходных технологических процессов с полной утилизацией отходов [1, 4]. Учитывая, что современный уровень технологии, в том числе и на предприятиях ЯТЦ не позволяет ввести замкнутые циклы для воды и воздуха, может быть разрешен ограниченный, строго контролируемый выброс ЗВ в окружающую среду. Таким образом, оптимальным путем ограничения загрязнения окружающей среды является строгое нормирование количества выбросов и сбросов ЗВ [2, 3]. Такое ограничение должно обеспечить соблюдение нормативов высокого качества окружающей среды для здоровья людей и нормального функционирования экосистем.

Строгое нормирование подразумевает организацию системы контроля, призванную обеспечить объективную информацию о не превышении соответствующих границ допуска.

Результаты контроля загрязнения объектов окружающей среды (воздуха, воды) позволяют оценить состояние санитарно – гигиенической обстановки. Результаты контроля технологических источников выбросов и сбросов позволяют получить данные об их интенсивности, что является исходной информацией для управления качеством окружающей среды. Так как качество воды и воздуха определяется содержанием в них загрязняющих веществ, то генеральной целью системы контроля является получение данных о концентрациях ЗВ.

Комментарии:
Популярные книги

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Фея любви. Трилогия

Николаева Мария Сергеевна
141. В одном томе
Фантастика:
фэнтези
8.55
рейтинг книги
Фея любви. Трилогия

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Небо в огне. Штурмовик из будущего

Политов Дмитрий Валерьевич
Военно-историческая фантастика
Фантастика:
боевая фантастика
7.42
рейтинг книги
Небо в огне. Штурмовик из будущего

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI

Бастард Императора. Том 5

Орлов Андрей Юрьевич
5. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 5

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6