Чтение онлайн

на главную - закладки

Жанры

Азбука звездного неба. Часть 1
Шрифт:

Прямое восхождение измеряется в восточном направлении вдоль небесного экватора в единицах времени: часах, минутах и секундах. Началом отсчета прямого восхождения служит точка весеннего равноденствия, в которой Солнце (при своем годовом движении по эклиптике) пересекает небесный экватор, переходя из Южного полушария в Северное. Эта точка, обозначаемая знаком созвездия Овен (Y), играет такую же важную роль при составлении звездных карт, как Гринвичский нулевой меридиан при составлении географических карт. Склонение измеряется в угловых единицах; градусах, минутах и секундах дуги. К северу от небесного экватора оно положительно, к югу — отрицательно. Поэтому небесные экваториальные координаты изменяются в пределах 0Ч-24Ч (= ОЧ) по прямому восхождению и от +90 до -90° по склонению.

Координаты небесных тел можно легко установить по звездным картам или выписать из каталога, где они приводятся вместе с названием объекта. Например:

Сириус

06Ч 24М

– 16° 42'

Галактика

Андромеда

00Ч 43М

+41° 16'

Во многих исследованиях можно считать, что прямое восхождение и склонение звезд не изменяются. Однако в действительности из-за гравитационного взаимодействия Земли с Луной и Солнцем земная ось медленно перемещается среди звезд, вследствие чего положение точки весеннего равноденствия медленно изменяется; это явление получило название прецессии. Около двух тысяч лет назад точка весеннего равноденствия находилась в созвездии Овен и поэтому её стали обозначать знаком Овна Y. К настоящему времени эта точка переместилась в созвездие Рыбы. Из-за прецессии медленно меняются экваториальные координаты звезд, и, чтобы избежать связанной с этим путаницы, карты составляют на определенные даты, например на начала 1900, 1950 или 2000 гг. Такая дата называется эпохой календаря или карты и обычно указывается в скобках после координат небесных тел. Например, если написано, что для а Центавра = 14Ч 39,6М, = -60° 50' (2000), то это означает, что приведённые координаты звезды относятся к эпохе 2000 г. Для визуальных наблюдений различия в координатах звезд в эпохи 1950 и 2000 гг. незначительны, поэтому вполне можно пользоваться более старыми картами и атласами. Однако вследствие прецессии изменяется положение полюса мира, и при фотографировании с длительной экспозицией эти изменения следует учитывать при установке телескопа.

Таблица №6

Обозначения небесных тел в каталогах

Прямое восхождение светила, находящегося в определенный момент времени на меридиане места наблюдения, равно местному звездному времени. Часто требуется знать часовой угол светила, который равен разности между звездным временем и его прямым восхождением. По определению часовой угол измеряется в единицах времени от небесного меридиана вдоль экватора в западном направлении. Часовой угол светила возрастает со временем в тех случаях, когда при расчетах этот угол оказывается отрицательным; чтобы получить его правильное значение, следует к полученному результату прибавить 24 ч. В литературе встречаются обозначения, когда часовой угол отсчитывается либо к западу, либо к востоку от меридиана.

Рис. 49. Прямое восхождение а отсчитывается в восточном направлении вдоль небесного экватора от точки весеннего равноденствия Т. Склонение отсчитывается к северу или к югу от экватора.

Поиск объектов при наблюдениях в бинокли и телескопы

При сравнении звездных карт с реально наблюдаемым небом иногда возникают трудности при поисках того или иного небесного тела. Это в значительной степени обусловлено отличием масштабов наблюдаемой картины неба от изображений на картах, а также тем, что в бинокли и телескопы видно несравненно больше звезд, чем показано на картах. В зависимости от инструмента, используемого для наблюдений, следует заранее подобрать соответствующую карту звездного неба. Так, при наблюдениях в бинокль нужна карта, ориентированная севером вверх, а при исследованиях с помощью телескопа — карта, на которой вверху расположен юг. Вообще говоря, работа с перевернутым изображением не вызывает особых трудностей. Значительные сложности возникают при наблюдениях через зенитную призму, так как она строит перевернутое зеркальное изображение. В этом случае вид неба приходится сравнивать с картой, рассматриваемой на просвет с обратной стороны. Старайтесь не пользоваться зенитным окуляром, особенно в искателях, пока не привыкнете к масштабам поля зрения телескопа и искателя.

Рис. 50. В методе «звездных скачков» (вверху) расположение ярких звезд служит ориентиром для поиска более слабых звезд и в конечном счете для обнаружения искомого объекта. Если известен размер поля зрения телескопа, то его можно использовать для обнаружения слабого объекта, перемещая поле зрения соответствующее число раз в направлении искомого объекта (в центре). Другой полезный способ поиска объектов — перемещение по прямому восхождению от яркого объекта А или по склонению от В, либо по обеим координатам от объекта С (внизу). Учитывая, что изображение в телескопе перевернуто, шаровое
скопление, показанное на рисунке, находится к востоку от звезды А, прямо к югу от В и к северу перед звездой С. Координаты звезд А, В и С известны.

При наблюдениях в телескоп довольно часто удается обнаружить вблизи искомого объекта характерную группу ярких звезд, отождествление которой с изображением на карте существенно облегчает поиск. Если возникли трудности при наблюдениях в телескоп, например в областях с высокой плотностью звезд вблизи Млечного Пути, то полезно сначала отождествить яркие звезды, лежащие по соседству с искомым объектом, с помощью бинокля, а затем уже найти их в искатель телескопа. Отождествлению звезд весьма помогают зарисовки картины, видимой в телескоп.

Если в окрестностях искомого слабого объекта нет заметных ярких звезд, которые могли бы служить ориентиром, то объект следует искать по его координатам. Эта задача значительно упрощается, если телескоп снабжен разделенными координатными кругами (о них речь пойдет ниже), с помощью которых осуществляется наведение на объект по координатам. Иногда для поиска светила удобнее воспользоваться разностью между его координатами и координатами яркой звезды. Эту разность нетрудно заранее рассчитать по координатам интересующих нас объектов, которые приводятся в каталогах и на картах; при этом не забывайте разность прямых восхождений переводить в угловые единицы. Наведя телескоп на яркую звезду, переместите его затем в нужном направлении на величину разности координат, используя для отсчета угловой диаметр поля зрения телескопа. Такой метод поиска и наведения на небесное тело годится при любых установках телескопов, но наиболее удобен при экваториальной установке. Выберите яркую звезду с тем же прямым Восхождением или склонением, что и искомый объект. Если у них одинаковы прямые восхождения, то наведите телескоп на яркую звезду, закрепите ось прямого восхождения, а затем перемещайте его в нужном направлении по склонению на угол, равный разности склонений. При совпадении склонений закрепите ось склонении и далее перемещайте телескоп по прямому восхождению на величину, равную разности прямых восхождений искомого объекта и звезды-ориентира. Если все же остаются сомнения в правильности наведения телескопа, попытайтесь сделать следующее. Найдите какую-нибудь звезду с тем же склонением, что и искомый объект, но расположенную несколько впереди него. Закрепив затем обе оси телескопа, ждите, когда вследствие суточного вращения Земли искомый объект попадет в поле зрения телескопа. (Такую операцию можно осуществить и при азимутальной монтировке телескопа, но только в том случае, если искомый объект находится на меридиане.)

Разделенные круги

Если установка должным образом сориентирована на Полюс мира, то для наведения телескопа на любой объект можно использовать проградуированные разделенные круги. Эти круги должны быть по возможности больших размеров и тщательно изготовлены. Круг склонения диаметром 150 мм должен иметь шкалу градусов, причем желательно, чтобы каждый градус был разделен на 30'. Аналогичный круг прямого восхождения должен быть проградуирован в часах, а каждый час разделен на интервалы в 2 мин. Круг необходимо снабдить указателем для отсчета. Градусное разбиение круга склонения позволяет определять склонение искомого светила либо непосредственно, либо с помощью разности склонений яркого и искомого объектов. По известной разности прямых восхождений яркого светила и искомого объекта нетрудно наводить телескоп по прямому восхождению. В этом случае разделенный круг используется как обычный угломерный инструмент.

Непосредственное наведение телескопа по прямому восхождению связано с определенными трудностями, так как требует знания звездного времени и зависит от того, закреплен ли круг прямого восхождения. Если круг прямого восхождения фиксирован, отсчету 0Ч соответствует направление телескопа на юг. В этом случае, рассчитав часовой угол искомого светила, поверните телескоп на величину этого угла по кругу прямого восхождения. Если круг прямого восхождения не закреплен, то вначале наведите телескоп на яркую звезду с известными координатами, после чего поворачивайте круг прямого восхождения до тех пор, пока указатель не покажет значение прямого восхождения звезды-ориентира; тогда, закрепив его, поворачивайте телескоп, пока указатель не покажет прямое восхождение искомого объекта. Такой способ наведения по прямому восхождению удобен для небольших телескопов. В некоторых более сложных установках телескопов предусматривается перемещение круга прямого восхождения вслед за звездой, т. е. указатель все время показывает ее прямое восхождение.

Время

Время, которым мы пользуемся в повседневной жизни, называется средним солнечным временем. Оно основано на средней продолжительности солнечных суток. Истинная продолжительность солнечных суток меняется на протяжении года; это обусловлено неравномерностью движения Земли вокруг Солнца и тем, что длина солнечных суток определяется изменением прямого восхождения Солнца, отсчитываемого вдоль экватора, а Солнце движется по эклиптике. Поправку, которую нужно прибавить к среднему солнечному времени, чтобы получить истинное солнечное время, называют уравнением времени.

Поделиться:
Популярные книги

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Барон Дубов

Карелин Сергей Витальевич
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов

Наука и проклятия

Орлова Анна
Фантастика:
детективная фантастика
5.00
рейтинг книги
Наука и проклятия

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Ваше Сиятельство 10

Моури Эрли
10. Ваше Сиятельство
Фантастика:
боевая фантастика
технофэнтези
фэнтези
эпическая фантастика
5.00
рейтинг книги
Ваше Сиятельство 10

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Солнце мертвых

Атеев Алексей Григорьевич
Фантастика:
ужасы и мистика
9.31
рейтинг книги
Солнце мертвых

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Часограмма

Щерба Наталья Васильевна
5. Часодеи
Детские:
детская фантастика
9.43
рейтинг книги
Часограмма

Избранное. Компиляция. Книги 1-11

Пулман Филип
Фантастика:
фэнтези
героическая фантастика
5.00
рейтинг книги
Избранное. Компиляция. Книги 1-11

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Крутой маршрут

Гинзбург Евгения
Документальная литература:
биографии и мемуары
8.12
рейтинг книги
Крутой маршрут