Баллистическая теория Ритца и картина мироздания
Шрифт:
Итак, теория Ритца, изображающая свет в виде потока частиц, прекрасно объясняет явления интерференции и дифракции и предлагает, по сути, первый в истории науки непротиворечивый способ описания волновых свойств света в рамках корпускулярного подхода. Впрочем, не исключено, что подобная корпускулярная модель света существовала ещё в древности, как показывает пример Лукреция или Да Винчи. На мысль о том, что наши предки считали свет волнообразным потоком частиц, способным огибать препятствия, дифрагировать на них, наводит уже само слово lux (свет), имеющее общую корневую основу с русским словом лук, луч, лучина, и с английским look (смотреть, § 1.9). Ведь наши предки уподобляли лучи света потоку стрел из лука, и в то же время слово "лук" у них означало "изогнутый", "волнистый" (отсюда словосочетания "излучина реки", "лука седла"), поскольку классический лук имел сложноизогнутую, волнистую форму. А потому, возможно, в этом стрелковом оружии отражены представления древних и о волновой структуре света, способного огибать преграды, позволяя источнику света в буквальном смысле "стрелять из-за угла".
§ 1.13 Взаимодействие света от движущегося источника со средой
Поэтому
Первый постулат теории относительности о равноправии инерциальных систем, в том числе, для явлений оптики и электродинамики, — не вызывает сомнений. Однако второй постулат — о независимости скорости света от взаимного движения источника и наблюдателя — не только не доказан опытом, но и противоречит первому (отсюда все парадоксы СТО). Ведь равноправие всех систем вытекает именно из классического закона сложения скоростей. Как показал ещё Галилей, падение тел внутри стоящего и плывущего корабля потому идентично, что, в случае движения, падающим телам сообщается скорость корабля (Рис. 37). То же свойство обнаружилось у света: для него, как показали опыты Майкельсона и аберрация звёздного света, работало классическое правило сложения скоростей (принятое в БТР). Майкельсон, закончивший военно-морскую академию и сам много плававший, по сути, повторил опыт Галилея с кораблём, но использовал в качестве судна саму Землю, а в качестве брошенного тела — свет. Из этих опытов следовала относительность движения света и первый постулат СТО (на деле просто принцип относительности Галилея). Второй же постулат, напротив, абсолютизировал движение света, будто на его скорость cне влияло относительное движение источника и наблюдателя. Не зря Макс Планк называл теорию относительности "теорией абсолютности".
Рис. 37. Движение корабля (амфибии) передаётся падающему телу, которое, как внутри покоящейся системы, падает по вертикали. Та же скорость передаётся свету и снарядам (для берегового наблюдателя).
До сих пор, рассуждая о баллистическом принципе сложения скорости света со скоростью источника, мы говорили о движении света в вакууме. Если же электромагнитная волна летит в среде, то, как было отмечено выше, ситуация кардинально меняется: проходя через среду, будь то воздух или плотные тела, волна воздействует на электроны среды, приводя их в колебания, отчего те излучают вторичные волны, которые, слагаясь с исходной, рождают явления рефракции, дисперсии и дифракции. Поэтому, возникает уже избранная система отсчёта, связанная с материальной средой. Описание волн в такой среде во многом подобно описанию их с помощью эфира. Вот почему теория Максвелла, основанная на эфире, всё ещё используется, не обнаруживая расхождений с опытом. Однако, в космосе, в безвоздушном пространстве, — возникают отклонения от теории Максвелла. Судя по результатам радиолокации и астрономических наблюдений, исчезает преимущественная система отсчёта, связанная с атмосферой, и скорость света начинает зависеть от скорости источника (Часть 2).
В данном разделе нас будут интересовать именно опыты в земных лабораториях, где свет движется в среде. Так, в качестве противоречащего БТР иногда приводят известный опыт по влиянию движения источника на скорость света в среде, — опыт Физо [93, 153]. По его результатам, если источник движется навстречу среде со скоростью V, то в среде фазовая скорость света от этого источника уже не c/n, а c/n+V/n 2. Паули считал это доказательством того, что скорость источника не складывается по классическому закону со скоростью света. Но, как было сказано, баллистический принцип здесь и не обязан работать, ибо скорость света в среде определяется не одним только источником, а ещё и атомами среды, вторичное излучение которых складывается с начальным, образуя новую волну. Вычислим её фазовую скорость [136, с. 425]. Если свет имеет скорость c+V, то поле единичной падающей волны опишется уравнением
E 0=e i(t — k'x),
где — циклическая частота падающей волны, а k'=/( c+V) — её волновое число.
Эта волна возбуждает в среде вторичные волны интенсивности
E 1= — ikxbe i(t — kx)[136],
где k=/ c —их волновое число, x— толщина пройденного слоя вещества, излучающего новую волну (Рис. 38), b— безразмерный коэффициент, характеризующий оптическую плотность среды (концентрацию атомов и эффективность переизлучения ими волны с частотой ). Поле результирующей волны
E= E 0+E 1= e i(t — kx)(e ix(k — k')—ikxb),
что с учётом разложения e x1+ xпри малых xи ( k — k') V/ c 2= kV/ cдаёт
Ee i(t — kx)(1+ ikxV/c— ikxb) e i(t — kx(1+b — V/c)).
Здесь kx( b — V/ c) —
Рис. 38. Отказ принципа относительности в опытах Физо (слева) и Саньяка (справа).
Как видим, наличие среды нарушает равноправие систем отсчёта. Во-первых, свет в среде движется со скоростью, отличной от скорости света в этой среде c/n. А, во-вторых, не вся скорость источника передаётся свету. Но реально здесь нет никакого противоречия с галилеевым принципом относительности. Рассмотрим для пояснения известную иллюстрацию принципа относительности, предложенную самим Галилеем. В своём "Диалоге" он показал, что мы не сможем заметить равномерного движения корабля, находясь в его трюме. Предметы в трюме будут падать совершенно так же (отвесно вниз), как в неподвижном корабле. Происходит это оттого, что скорость vкорабля сообщается падающим предметам. Но если и сам корабль и падающие в нём предметы движутся по горизонтали со скоростью v, то их относительное движение нельзя заметить. Но так будет только в трюме. Если мы выйдем на палубу корабля, то равноправие уже нарушается. За счёт движения корабля обдувающий его воздух порождает встречный ветер, который нарушает симметрию, увлекает предметы. Поэтому брошенные от носа к корме предметы, увлекаемые ветром, будут долетать быстрее и дальше, чем от кормы к носу. Подобно воздуху, увлекающему в опыте Галилея падающие предметы, среда передаёт частично скорость и свету. В опыте Майкельсона среда не нарушала принцип относительности и баллистический принцип лишь потому, что атмосфера двигалась вместе с Землёй и источником света, так же как воздух в трюме корабля двигался вместе с кораблём в опыте Галилея. Зато при взаимном движении источника и среды ситуация кардинально меняется: принцип относительности перестаёт соблюдаться.
Итак, если движущийся источник сообщает свою скорость свету, в качестве добавки к скорости c, то, при попадании в прозрачную среду, за счёт вторичного излучения среды и сложения его с излучением падающей волны, эта добавка постепенно исчезнет, как постепенно теряет горизонтальную скорость предмет, выброшенный из окна поезда и тормозимый сопротивлением воздуха. Исходная волна, попадая в среду и заставляя колебаться её электроны, переизлучается этими бесчисленными ретрансляторами и, при том, гасится за счёт интерференции с идущими от них вторичными волнами. Этот принцип известен в электродинамике как "теорема погашения Эвальда и Озеена". Однако в применении к БТР эта теорема была впервые исследована Дж. Фоксом [2], который показал, что, вместе с гашением первичной волны, теряется также информация о скорости её источника. Поэтому, в дальнейшем будем иногда называть это правило погашения у света добавочной скорости источника — "принципом Фокса". Этот принцип имеет большое значение в изучении многих явлений космоса и особенно важен в земных лабораторных экспериментах.
Интересно отметить, что некоторые лабораторные эксперименты действительно подтвердили, что свет после прохождения сквозь среду приобретает её скорость. Ведь, согласно БТР, скорость равна cотносительно источника. Среда же, через которую проходит свет, сама начинает играть роль источника света. И точно, как показали уже земные эксперименты, скажем опыты У. Кантора [4] и М.И. Дуплищева [47], прозрачные пластинки дополнительно сообщают свою скорость vизлучению, отчего скорость световых лучей становится не c, а c+v. Результаты этих экспериментов, несмотря на их тщательную постановку, пытались оспорить и затушевать [153]. Однако достаточно убедительно этого никто не сделал.