Чтение онлайн

на главную - закладки

Жанры

Баллистическая теория Ритца и картина мироздания
Шрифт:

Рис. 41. Опыт Кауфмана — исследование отклонений быстро летящих электронов в электрических и магнитных полях.

Такое предположение тем более естественно, что, как выяснили ранее, скорость заряда и впрямь может влиять на величину электрической и магнитной силы (§ 1.7). Поэтому, согласно Ритцу, куда естественней считать, что электроны получают разные ускорения от разных сил, а не масс. Так, например, если пружинные весы показывают в зависимости от условий (скажем, от высоты или ускорения) разный вес гири, вряд ли мы сочтём, что меняется её масса. Скорее мы решим, что врут весы, и, в действительности, меняется сила тяжести и сила веса. То же — и в опытах по взвешиванию электрона электромагнитными весами, где влияние движения на величину кулоновской силы, в отличие от влияния на массу, кажется вполне возможным. В БТР

зависимость силы от скорости — это обязательное следствие предложенной Ритцем модели взаимодействия зарядов. Ведь, если отталкивание зарядов создаётся ударами испускаемых ими со скоростью света частиц (реонов), то частицы эти не смогут догнать электрон, движущийся с той же скоростью c, а значит, не смогут ударно воздействовать на него. Вот и кажется, что масса электрона бесконечна, хотя реальная причина в нулевой силе. Такой мнимый бесконечный рост массы заряда с приближением его скорости к c, задолго до опыта Кауфмана предсказывал ещё В. Вебер на основе своей электродинамической теории, этого прообраза электродинамики В. Ритца [106].

Рассмотрим вопрос количественно. Теоретически, след электронного луча на экране должен был иметь форму параболы с уравнением

y=kx 2Em/H 2,

где k— некоторая постоянная, Eи H— напряжённости электрического и магнитного полей, а m— масса электрона. Наблюдаемая же кривая отличалась от этой параболы так, будто с ростом скорости масса mувеличивалась пропорционально (1+ v 2/2 c 2). Но ведь, как выяснено, почти так же, пропорционально (1+ v 2/3 c 2) нарастает со скоростью заряда электрическая сила и поле E. Учёт переменности Eпри постоянной массе внесёт в уравнение параболы почти те же изменения, что и учёт переменности mпри постоянном E. Разница же коэффициентов (в полтора раза) устраняется более точным расчётом, представленным в работе Ритца [8]. О причинах этого постоянного отличия в полтора раза в меньшую сторону было сказано выше (§ 1.7).

Итак, опыт Кауфмана продемонстрировал ошибочность прежней физики. Но, если Эйнштейн видел выход в отказе от классической механики, при сохранении электродинамики Максвелла (изменение массы при неизменной электрической силе), то Ритц счёл, что намного более естественно отказаться именно от электродинамики Максвелла, при сохранении классической механики (изменение электрической силы при неизменной массе электрона). Вывод Ритца тем более естественен, что именно отказ от максвелловской электродинамики и создание новой электродинамики БТР на базе классической механики, позволяет легко, без каких-либо формальных приёмов и произвольных подтасовок (имеющих место в СТО), получить правильный закон изменения электрической силы, объясняющий опыт Кауфмана.

В самом деле, эффект мнимого изменения массы легко может быть объяснён с помощью классической механики — даже на пальцах. Поскольку электрическое воздействие создаётся потоком реонов, то при движении электрона скорость реонов относительно него меняется. Реонам приходится догонять убегающий от них электрон, соответственно, сила и частота их ударов об электрон — снижается, а, потому, — уменьшается и вызываемое реонами электрическое воздействие на электрон. Таким образом, чем выше скорость электрона, тем меньше сила электрического воздействия на него, а, значит, меньше и вызываемое этой силой ускорение и отклонение электрона. Это уменьшение ускорения и объясняют увеличившейся массой, тогда как реальная причина — в уменьшении силы.

Эффект изменения массы наблюдался и для других частиц, например, при их разгоне в циклотроне. Оказалось, что циклотрон не может полностью реализовать своих возможностей и передать частицам свою максимальную мощность. Дело в том, что кружащиеся в циклотроне частицы, разгоняемые периодично меняющимся электрическим полем, с увеличением их энергии и скорости движения — за счёт изменения массы, а, значит, и частоты обращения, выходят из резонанса с колебаниями электрического поля. Поэтому, поле перестаёт передавать частицам энергию. Лишь изменяя частоту ускоряющего поля, как это делают в синхротронах, можно достичь максимальной эффективности ускорителя. И всё же по логике БТР, и в этом случае, нет, в действительности, никакого изменения массы. Ведь в ускорителе частота обращения заряженных частиц определяется их ускорением, то есть, опять же, — отношением силы (Лоренца) и массы. И опять причина изменения частоты обращения с ростом скорости состоит не в изменении массы, а в изменении вслед за скоростью — силы Лоренца. Сила Лоренца F=qVB, действительно, меняется вместе со скоростью Vчастицы. Это линейное изменение силы необходимо для обеспечения постоянства частоты = qB/m, крайне важного в циклотроне: F=qVB=ma=mV. Однако, движение заряда вносит, как показал Ритц, ещё и нелинейные поправки в величину силы Лоренца, становящиеся заметными на больших скоростях. Из-за этого, с увеличением скорости заряда — уменьшается частота

обращения = F/mV, что, однако, расценивают как увеличение массы m, хотя реально масса постоянна, а меняется сила.

Ещё задолго до Ритца учёные догадались, что электричество по-разному действует на движущийся и покоящийся заряды. На этом фундаменте, собственно говоря, и строилась прежняя электродинамика Вебера и Гаусса. С приходом полевой, эфирной электродинамики Максвелла от этой плодотворной идеи отказались. Когда же выяснилось, что эфир — это фикция, и, следовательно, основанная на нём максвеллова электродинамика ошибочна, учёные не захотели вернуться к прежним воззрениям на природу электричества, но предпочли согласовывать несогласуемое: максвеллову электродинамику и факт отсутствия эфира. Это и породило, по признанию Эйнштейна, его теорию относительности и все её парадоксы. Таким образом, отказ от теории относительности — невозможен без отказа от электродинамики Максвелла.

В БТР масса постоянна, и потому разгон до скоростей, равных и больших скорости света, которому в СТО мешает бесконечное нарастание массы, — вполне возможен. Значит, быть сверхсветовым межзвёздным кораблям (§ 5.11)! Более того, сверхсветовые скорости, вероятно, давно уже достигнуты в лабораториях, и лишь расчёт по формулам теории относительности мешает это обнаружить (§ 1.21). Ритц полагал, что уже в опытах Кауфмана могли наблюдаться сверхсветовые электроны. Как видим, находясь в рамках классической механики, вполне можно сберечь закон сохранения массы. Лишь тот, кто предаёт веру в законы механики, разуверяется в них, а значит — в объективной реальности материи, неизбежно принимает абсурдную идею об изменении массы.

§ 1.16 Аннигиляция и эквивалентность массы и энергии

Тело вещей до тех пор нерушимо, пока не столкнётся С силой, которая их сочетанье способна разрушить. Так что, мы видим, отнюдь не в ничто превращаются вещи, Но разлагаются все на тела основные обратно… ….Словом, не гибнет ничто, как будто совсем погибая, Так как природа всегда возрождает одно из другого И ничему не даёт без смерти другого родиться. Тит Лукреций Кар, "О природе вещей" [77]

Теория относительности посягнула не только на закон сохранения массы, но и на доставшийся дорогой ценой закон сохранения энергии: согласно СТО масса mи энергия Eмогут исчезать и появляться. При этом, в СТО масса эквивалентна энергии, и, хотя по отдельности они не сохраняются, работает закон сохранения некой масс-энергии, выражаемый известной формулой E= mc 2. Таким образом, рассмотренные выше эксперименты, в которых отмечался рост масс частиц с увеличением их скорости, означали, согласно СТО, что энергия, затраченная на ускорение частицы, шла не только на увеличение её скорости, но и на увеличение её массы: масса и энергия частицы росли одновременно. Такая эквивалентность массы и энергии тоже, как будто, находит подтверждение в опытах. Это не только опыты по "увеличению" масс частиц с ростом их скорости, но и ядерные эксперименты. Так, при распаде радиоактивных изотопов было обнаружено, что суммарная масса исходных реагентов m 1ядерной реакции не равна общей массе m 2продуктов реакции. Уменьшение массы m= m 1m 2реагентов (это изменение mназывают дефектом массы) сопровождается выделением энергии, величина которой Eотвечает соотношению E= mc 2теории относительности. И, наоборот, увеличение массы продуктов, в сравнении с массой реагентов, — требует затраты соответствующей энергии.

Это взаимопревращение массы и энергии приводят в качестве одного из важнейших подтверждений теории относительности. Со школы нас учат, что, если бы СТО была ошибочна, то не могли бы работать ни ускорители частиц, ни атомные электростанции, не рвались бы ядерные бомбы. Однако, сторонники теории относительности кривят душой. Ведь в ядерных реакциях выделяется, на самом деле, лишь скрытая внутренняя энергия связи частиц — нуклонов в ядре. Почему эта энергия соответствует изменению массы — это другой вопрос, который разберём отдельно (§ 3.13). Но то, что выделившаяся энергия — это лишь внутренняя энергия связи частиц, не подлежит сомнению и, в общем-то, даже не оспаривается. Поэтому, утверждать, будто открытие ядерных реакций распада и выделение энергии в ядерных реакторах и ядерных бомбах было невозможно без теории относительности, это всё равно, как полагать, будто выделение энергии в обычных химических реакциях и в печах, при взрыве обычных бомб, — тоже чем-то обязано теории относительности. В ядерных и химических реакциях происходит по сути одно и то же: выделение или поглощение скрытой энергии связи при соединении или делении ядер и молекул. Не случайно Резерфорд (учёный, открывший атомное ядро и ядерные реакции) на вопрос о его мнении по поводу теории относительности, ответил, что для ядерных исследований она не нужна, и здравый смысл не позволяет ему рассматривать эту теорию всерьёз.

Поделиться:
Популярные книги

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV