Баллистическая теория Ритца и картина мироздания
Шрифт:
Как видим, приведённые выше попытки опровергнуть баллистический принцип не имеют доказательной силы, — все они некорректны. Впрочем, не они привели к отказу от баллистической теории Ритца, а совсем иные наблюдения, а, конкретней, выполненный Де Ситтером анализ движения двойных звёзд. Собственно говоря, это и был первый весомый аргумент против баллистической теории, который остановил её развитие и привёл к забвению идей Ритца. Напомним, что "двойной звездой" называют пару звёзд Mи N, обращающихся вокруг общего центра Oпо круговым или эллиптическим орбитам (Рис. 65). Если скорость испускаемого звёздами света cскладывается с их орбитальной скоростью v, то луч от приближающейся к нам звезды Aдолжен иметь б'oльшую скорость и проходить расстояние Lдо земного наблюдателя быстрее, чем луч от удаляющейся B(Рис. 63. а). Поэтому, согласно БТР, свет приближающейся звезды Mмы видели бы на время t= L/( c-v)— L/( c+v) раньше, чем свет удаляющейся N.
Рис. 65. Двойные звёзды с круговыми (а) и эллиптическими (б) орбитами.
В результате видимое движение звёзд исказится, получив отклонения от законов Кеплера, чего реально никто не наблюдал [26, 152]. Именно это было основным аргументом, по которому в своё время отвергли теорию Ритца. Но, поздней, было показано, что у двойных звёзд, различимых через телескоп, подобные отклонения и нельзя бы было обнаружить при существующих параметрах двойных звёздных систем и разрешающей способности астрономических приборов [111]. Из-за сравнительно малой их удалённости, малыми (меньше разрешающей силы телескопов) получаются и пропорциональные Lискажения.
Поэтому, против теории Ритца могут свидетельствовать лишь наблюдения спектрально-двойных звёзд, удалённых от нас на много большие расстояния, чем визуально-двойные, и имеющих пропорционально большие искажения. Однако, такие звёзды уже неразличимы по отдельности, и, даже при наблюдении через сильнейшие телескопы, сливаются в одну светящуюся точку. Поэтому, об их движении судят лишь на основании наблюдений спектра звёзд: смещение спектральных линий даёт по формуле эффекта Доплера лучевую скорость звёзд в каждый момент времени. А по кривой лучевых скоростей легко найти основные параметры звёздных орбит, в том числе их эксцентриситет, — степень вытянутости орбиты. Так, если для круговой орбиты кривая лучевых скоростей имеет форму синусоиды (Рис. 66. а), то для эллиптической орбиты она уже менее симметрична (Рис. 66. б, в).
Рис. 66. Орбитальные v и лучевые vr скорости звёзд в зависимости от вида их орбиты и положения на ней.
Рассмотрим случай круговой орбиты. Если движение звезды влияет на скорость света, то её кривая скоростей должна перекоситься (Рис. 67): точки, где лучевые скорости v rположительны (направлены от нас, снижая скорость света до c– v r) сместятся вперёд по оси времени (их свет запоздает), а где отрицательны — назад (их свет прибудет раньше за счёт выросшей скорости света). И форма кривой скоростей (Рис. 67. а) стала бы напоминать таковую для эллиптической орбиты Рис. 66. в). Кроме того, нарушался бы (Рис. 67. б) зеркальный ход кривых скоростей двух звёзд Mи N(Рис. 65. а). Зная удалённость и скорость звёзд, легко вычислить значения этих предполагаемых отклонений. Но, как показали наблюдения, такие отклонения отсутствуют или имеют величину заметно меньшую расчётной. Так, известно множество спектрально-двойных с почти круговыми орбитами, которые по БТР казались бы сильно вытянутыми. Выяснилось, что, если скорость света и складывается со скоростью источника по закону c=c+kv, то k<0,002 [93]. То есть выходило, что теория Ритца (где k=1) полностью противоречит наблюдениям.
Рис. 67. Искажения (сплошные линии) кривых скоростей, вносимые движением звёзд.
Но всё не столь однозначно. Ведь о движении спектрально-двойных судят лишь по смещению спектральных линий, а в БТР оно создаётся уже не только доплер-, но и ритц-эффектом (§ 1.10). Причём, в космосе, в мире гигантских масштабов L, ритцевы смещения, пропорциональные La/ c 2, могут заметно превосходить доплеровские, пропорциональные / c. Для звезды, движущейся по круговой орбите радиуса r, центростремительное ускорение a= v 2/ r, откуда La/ c 2= Lv 2/ rc 2. И спектральный сдвиг от эффекта Ритца превосходит таковой от эффекта Доплера в Lv/ rc, или порядка L/ cPраз, то есть, — во столько же раз, во сколько расстояние до звезды в световых годах L/ cпревышает период P=2 r/ vеё обращения. А, поскольку, для большинства спектрально-двойных звёзд, исследованных Де Ситтером, орбитальный период Pсоставлял несколько суток, а удалённость L/ c— многие световые годы, то смещение для них создавалось в основном эффектом Ритца.
Следовательно, в спектрах тесных двойных звёздных систем периодическое смещение линий вызвано, по большей части, не скоростями, а ускорениями звёзд. Найденные же по формуле Доплера параметры движения — ошибочны: истинные скорости звёзд будут меньше найденных — как раз в L/ cPраз, то есть, как минимум, в тысячи раз. А, потому, ожидаемые отклонения, пропорциональные kv, не могли бы возникнуть даже при k=1: наблюдения не противоречат теории Ритца! Напротив, раз реальные отклонения, согласно теории Ритца, в тысячи раз меньше ожидаемых Де Ситтером, то обнаруженные искажения (соответствующие k<0,002) могут служить подтверждением БТР. Если б астрономы смогли наблюдать движение спектрально-двойных звёзд непосредственно, они бы заметили несоответствия, но в том-то и проблема, что о движении их судят
Рис. 68. Центростремительные a и лучевые ar ускорения звёзд в зависимости от их орбиты и положения на ней.
Лишь привлекая другие методы измерений, можно понять, чем вызван сдвиг линий в спектрах далёких звёзд: их скоростью или ускорением. Так, известны звёздные пары, в которых одна звезда периодически закрывает собой другую. По периодам между затмениями определяют форму и положение их орбиты: у некоторых звёзд она оказалась вытянутой точно вдоль луча зрения r, как на Рис. 66. в. Но спектральные измерения дали для этих звёзд отнюдь не кривую с Рис. 66. в, а кривую Рис. 66. б[27, с. 200–203]. С точки зрения астрофизики, это совершенно невозможно. Эффект же Ритца всё легко объясняет: если спектральное смещение в этих случаях вызвано ускорением, то для орбиты, вытянутой вдоль r(Рис. 68. в), получим как раз кривую с Рис. 66. б. БТР объясняет и другие странности двойных звёзд, описанные в книге Алана Бэттена [27] и объединённые общим названием "эффект Барра". Так, у некоторых двойных систем кривые скоростей звёзд Mи Nне соответствуют друг другу [27, с. 207], совсем как на Рис. 67. б. Понятно, что наблюдение таких аномалий не может отражать реального движения двойных звёзд: как отмечает сам Барр, движение видится искажённым от какого-то оптического эффекта, как легко догадаться, — от эффекта Ритца. Интересно, что глава из книги Бэттена так и называется: "Деформация кривых лучевых скоростей", а ведь именно такое искажение видимых звёздных движений давно предрекали как одно из следствий БТР. Причём, статья Барра "Орбиты и кривые скоростей спектрально-двойных звёзд"вышла в том же судьбоносном 1908 г., когда Ритц опубликовал свою баллистическую теорию. То есть, уже тогда были все предпосылки для признания БТР, и лишь воинствующее невежество таких учёных, как Де Ситтер, помешало торжеству истины.
Так же, и нынешние учёные почему-то никак не связывают искажения расчётных орбит с предсказанными БТР, хотя ещё век назад Комсток и Де Ситтер отмечали, что обнаружение таких деформаций орбит подтвердило бы теорию Ритца. Итак, в космосе открыт эффект Барра, — несоответствие спектральных кривых лучевых скоростей реальному движению двойных звёзд. Астрофизика с теорией относительности объяснить этого не могут, тогда как теория Ритца — легко и естественно объясняет. Ещё в 1913 г. в печатной дискуссии с Де Ситтером астроном Э. Фрейндлих обратил внимание учёных на эффект Барра: преимущественную вытянутость эллипсов звёздных орбит в направлении к Земле [3, 107]. Фрейндлих, следуя Барру, отметил, что реально орбиты должны располагаться случайным образом (иначе вернёмся к геоцентризму Аристотеля), а, значит, эта асимметрия говорит об искажении видимых звёздных движений — от влияния скорости звёзд на скорость света, по БТР. Пауль Гутник и Фрейндлих привели ряд аргументов в пользу реальности такого влияния, предсказанного теорией Ритца и противоречащего СТО. При этом, они отмечали, что, хотя говорить о подтверждении баллистического принципа c=c+vещё рано, всё же двойные звёзды отчётливо показывают, что скорость vзвёзды влияет на скорость приходящего от неё света по закону c=c+kv, где k— некий, пусть и отличный от единицы, коэффициент. Выше видели, что такая поправка kестественно вытекает из баллистической теории, если учесть, что скорости vмногих спектрально-двойных звёзд завышены в сотни и тысячи раз. Кроме того, как показал Дж. Фокс (§ 1.13), от торможения и переизлучения света облаками газа вокруг звёзд, свет, исходно вылетающий со скоростью c=c+v, по мере движения, всё больше теряет эту скорость, и приходит к нам уже на скорости c=c, или на очень близкой к ней скорости c=c+kv. Тогда k<<1 будет здесь иметь смысл коэффициента нейтрализации средой отклонений от скорости света c(аналогичного коэффициенту 1/ bиз § 2.4).
Кстати, тот же Фокс через 50 лет после Фрейндлиха подтвердил, что ряд аномалий двойных звёзд, включая эффект Барра, можно объяснить перекосом графиков их лучевой скорости — из-за влияния движений звёзд на скорость света, по БТР [2]. Такое искажение приведёт к тому, что даже у звёзд, имеющих круговую орбиту, та будет нам представляться (на основе спектральной кривой лучевых скоростей) вытянутой в направлении к нам (Рис. 69). Если же учесть и спектральный сдвиг от эффекта Ритца, то эллипс окажется, вдобавок, повёрнут по часовой стрелке. Так что периастр чаще будет располагаться где-то в первом квадранте, о чём и говорит эффект Барра [3, 14, 27]. Если не принять в расчёт БТР, то такое, резко неоднородное, распределение периастров и орбит по направлениям будет совершенно непонятным. Кроме того, Фокс, подвергнув анализу элементы орбит двойных звёзд, расположенных на разном удалении, подтвердил предсказание Фрейндлиха о том, что эти искажения (неравномерности в расположении орбит и избыточные эксцентриситеты звёзд), в согласии с БТР, увеличиваются с расстоянием L, поскольку пропорционально Lрастут искажения v rL/ c 2, вносимые движением звёзд в скорость света и кривые лучевых скоростей.
Рис. 69. Перекос кривой скоростей меняет расчётную форму орбиты: искажения показаны пунктиром.
В настоящее время Космос преподносит всё новые доказательства того, что нынешняя абстрактная физика и космология ошибочны и всё больше свидетельствует в пользу их классических вариантов и, конкретно, — в пользу БТР. Так, помимо перечисленных загадочных и парадоксальных эффектов, вроде эффекта Барра, следует упомянуть наблюдения экзопланет, то есть планет, обращающихся в других звёздных системах. Оказалось, что орбиты этих планет имеют огромные эксцентриситеты (около 0,3 и выше), совершенно не типичные для Земли и планет Солнечной системы (где 0,01<<0,2), словно Земля и её окружение чем-то выделены. Очень возможно, что столь большие эксцентриситеты — это, опять же, лишь видимость, иллюзия, вызванная искажением наблюдаемого движения и спектра звёзд, приводящим к перекосу кривой скоростей. Если же отказаться от БТР, то вернёмся к аристотелеву геоцентризму — выделенности Земли, земного наблюдателя. То, что найденные по спектрам эллипсы звёздных орбит чаще повёрнуты к нам, отмечалось давно и отечественными учёными, и тоже не находило объяснения, поскольку очень немногие знали о теории Ритца [14].