Чтение онлайн

на главную - закладки

Жанры

Баллистическая теория Ритца и картина мироздания
Шрифт:

Однако то, что электрон — самая лёгкая частица из всех известных, и что все частицы состоят из электронов, ещё не означает, что электрон — это самая простая частица. Вглубь наш мир столь же неограничен, как вширь пространства и времени. Поэтому, и электрон с позитроном должны иметь внутреннюю структуру и быть построенными из ещё меньших частиц. Ранее выяснили, что электроны, испускающие реоны, и построены должны быть из этих частиц, так же, как позитроны — из испускаемых ими ареонов (§ 1.6). Выяснили также, что массы всех частиц складываются из образующих их масс электрона, принятых за единицу (§ 3.9). Но что тогда есть масса самого электрона, какова её природа? В классической физике полагали, что его инертная масса m— это мера электрического воздействия электрона самого на себя. И представляли электрон в виде заряженной сферы радиуса r, при ускорении которой действие передней части, заряда сферы на заднюю превышало обратное (§ 1.17). Разница сил и создаёт силу инерции, мешающую ускорению электрона.

Это позволило рассчитать, так называемый, "классический радиус электрона" r. В самом деле, если для простоты разбить сферу электрона на два заряда e/2,

отделённых расстоянием r, то в покое или при равномерном движении силы их взаимодействия F= e 2/16 0 r 2уравновешивают друг друга. Но, при движении с ускорением a, нарушается баланс сил Fи F'взаимодействия зарядов (§ 1.17). Их разница F= F'-F=4 Far/с 2= ae 2/4 0 2— это и есть сила инерции F ин= ma(Рис. 138). Отсюда можно выразить инертную массу электрона m=e 2/4 0 2и найти его радиус r= e 2/4 0 2= 2,82·10 –15м. Именно так определяют классический радиус rэлектрона [82].

Рис. 138. Деля сферу электрона на два заряда, можно выразить силу инерции, мешающую ускорению электрона, через его радиус r.

Поясним, какой смысл мы вкладываем в термин "классический радиус электрона" и величину 10 –15м, которую физики называют "ферми". Надо думать, она выражает не столько размер электрона, сколько некий масштаб микромира, — то расстояние, на котором исчезает электрическое взаимодействие, подобно тому, как сила тяготения утрачивает своё господствующее значение, при переходе от космических — к микроскопическим масштабам. Так, и кулонова сила на расстояниях порядка 10 –15м становится исчезающе малой — либо сама по себе, либо в сравнении с силами другой природы, проявляющимися на таких дистанциях. В итоге, именно на таких пространственных масштабах могут возникать отклонения от закона Кулона [60, 137]. Недаром, и размеры ядер атомов составляют как раз около 10 –15м: на таком расстоянии кулоновское отталкивание протонов в ядре уже не мешает им сблизиться. Так или иначе, притяжение и отталкивание зарядов на расстояниях порядка 10 –15м почти исчезает (или даже меняет знак), и это расстояние aстановится равновесным.

Возможно, по той же причине, за счёт общей природы электрических и магнитных сил, на таком расстоянии иначе, чем обычные магниты, взаимодействуют и элементарные «магнитики» частиц-соседей в кристаллической структуре атома (§ 3.1). Вместо того, чтобы установиться противоположно, их моменты во внешнем поле ориентируются сонаправленно. Не в этом ли причина странного поведения частиц, устанавливающих спин и магнитный момент не только вдоль, но и против внешнего магнитного поля? А физики-кванторелятивисты "объясняют" это — абстрактным квантованием направлений спина [82]. Именно квантовая механика и квантовая электродинамика стала непреодолимым барьером на пути к пониманию строения и взаимодействия частиц, особенно электронов. Поэтому в нынешней физике возникают серьёзные трудности при объяснении радиационного трения, тормозного излучения электронов. Но все эти эффекты качественно и количественно следуют из построенной Лоренцем и Ритцем классической теории, представляющей электрон в виде заряженной сферы. Ускоренное движение этой сферы порождает не только тормозящую электрон силу (связанную с его электромагнитной массой), но и тормозное излучение, радиационное трение, которое и мешает разгону электрона.

Итак, классический радиус электрона — это, скорее, не реальный радиус частицы, а то критическое расстояние, на котором уже неприменим закон Кулона, что признают и современные физики, хотя и не могут объяснить [60]. А, в рамках БТР, объяснение легко найдётся. Ритц считал электрон частицей, источающей реоны, — словно бенгальский огонь, рассыпающий снопы искр. Но можно допустить, что электрон выстреливает не отдельные реоны, а — собранные в пачки, блоки, обоймы, имеющие вид более массивных частиц. На некотором расстоянии rот электрона эти частицы взрываются, распадаясь на отдельные реоны. Поэтому, назовём эти частицы "бластонами" (от англ. blast — взрыв, заряд для взрыва) и обозначим латинской B. Именно радиус сферы распада r, на котором бластоны, словно разрывные осколочные снаряды, взрываются каскадами реонов, и будет классическим радиусом электрона. Тогда электрон следует уподобить ракетнице, стреляющей зарядами, как в салюте рассыпающимися сотнями осколков (Рис. 139).

Рис. 139. Словно в фейерверке, бластоны B, выстреленные электроном e, взрываются на расстоянии r каскадами реонов R.

Часть этих осколков-реонов улетает со скоростью cпрочь от электрона, создавая кулоновское отталкивание, а часть возвращается к нему,

своими ударами порождая силу инерции электрона, поскольку сфера распада бластонов, испускающая реоны, эквивалентна равномерно заряженной сфере заряда e(по его определению, данному в § 1.6). Понятно, что едва только пара электронов или позитронов сблизятся до расстояния, меньшего r, отталкивание между ними исчезнет (Рис. 140). Электрон, находящийся внутри равномерно "заряженной" сферы распада, не испытывает воздействия, так же, как любой электрический заряд внутри равномерно заряженной сферы [60]. Не исключено, что в этом, отчасти, заключена и причина ядерного взаимодействия (сильного и слабого), проявляющегося лишь на таком расстоянии. Заряды (электроны и позитроны), входящие в состав элементарных частиц ядра, будучи сближены до расстояния r, перестают притягиваться или отталкиваться, вопреки закону Кулона, что и задаёт характерный размер ядер и элементарных частиц, а также масштаб расстояний меж ними и узлами электрон-позитронной решётки. Именно это расстояние rназывают "радиусом действия ядерных сил", и именно такой размер r, — порядка 10 –15м имеют ядра.

Вообще говоря, сфера распада бластонов не имеет чётких границ, она размыта, в классическом смысле, поскольку эти разрывные частицы, выброшенные электроном, лишь в среднем распадаются на расстоянии r. Словно искры, одни из них живут чуть дольше и, как шальные пули, успевают улететь далеко от электрона, а короткоживущие — взрываются близко. Соответственно, на малых расстояниях кулоновская сила, порождаемая ударами реонов, случайным образом меняет не только свою величину, но и направление, а, потому, закон Кулона имеет лишь среднестатистический смысл и выполняется лишь на расстояниях, заметно б'oльших r=10 –15м [60]. Этим можно, например, объяснить туннельный эффект — способность протонов к слиянию — даже на расстояниях, б'oльших r(когда преобладать должны силы отталкивания, § 5.8), или, напротив, — способность протонов и -частиц отрываться от ядра в ядерных распадах на расстояниях меньших r, когда должно преобладать ядерное притяжение (§ 3.14, § 4.12).

Рис. 140. Исчезновение кулонова взаимодействия электронов и позитронов при их сближении до расстояния L<r=3·10 – 15м.

Далее рассмотрим притяжение позитрона и электрона. При сближении до расстояния r, они тоже должны перестать взаимодействовать. Как показал В. Мантуров, энергия, выделяемая при аннигиляции электрона и позитрона — это вовсе не энергия уничтожения их массы, а, всего лишь, — потенциальная энергия их электрического взаимодействия, выделившаяся при сближении частиц до расстояния, равного классическому радиусу электрона r(§ 1.16). Дальше энергия не выделяется, поскольку частицы уже не сближаются и не взаимодействуют. При этом, когда электрон с позитроном окажутся внутри общей сферы распада, они перестанут сопротивляться ускорению: их суммарная масса, подобно заряду, — обнулится (что естественно, если их массы разного знака, § 1.6). Возможно, поэтому такие частицы и нельзя обнаружить: от малейшего воздействия такие пары нулевой массы мгновенно ускоряются и улетают, не оставляя и следа. Именно такие электрон-позитронные пары, обладая свойствами электродиполя и нулевой инертной массой, могут формировать бипирамидальные каркасы, ответственные за свойства и спектры атомов и, в то же время, не вносящие вклада в атомные веса (§ 3.3). Отметим, что речь здесь идёт лишь об инертной массе, и, если сферы распада частиц не перекрываются, то их массы суммируются по модулю. А, при частичном перекрытии сфер распада, возможно частичное уменьшение инертной массы, что, возможно, объясняет дефект массы и может найти практическое применение (§ 5.7).

Таким образом, то, что обычно называют классическим радиусом электрона r 0 =2,82·10 –15м, возможно, лишь его внешний радиус, — радиус сферической оболочки распада, тогда как сам электрон (его основная, массивная часть) заключён в малой центральной области этой сферы, своего рода электронном ядре, или керне. Именно поперечник и площадь этого электронного ядра определяет сечение поглощения электроном потока подлетающих к нему реонов. Видимо, в этом и состоит одна из причин того, что реоны имеют очень большую длину пробега в веществе. За счёт малых размеров электронного ядра, вероятность столкновения с ним реонов — ничтожна (§ 1.4), и лишь высокая плотность потока реонов приводит к тому, что часть реонов всё же поглощается, и между электронами существует электрическое взаимодействие. Примерно так же, и неуловимое всепроникающее нейтринное излучение удаётся обнаружить лишь за счёт высокой плотности потока нейтрино.

Впрочем, если учесть, что сфера распада размыта, её параметры могут определять и сразу два масштаба электронных размеров. Вспомним, что электрон, и, соответственно, — шаг электронной сетки, решётки, имеет два характерных масштаба: один r 0=2,8·10 – 15м, а второй a 0=5,3·10 – 11м (§ 3.7). Первый, малый масштаб r 0,— внутриядерный. Именно он определяет размер и структуру ядра, протонов, элементарных частиц, расстояния между электронами и позитронами в них и расстояния между протонами и нейтронами в нуклонных слоях. Он же ответственен за ядерные спектры и величину ядерных сил. Второй, более крупный масштаб a 0,— внутриатомный. Именно он задаёт размер атома и структуру его электронных оболочек, расстояния между электронами на уровнях и между уровнями. Соответственно, этот масштаб, задающий размер ячеек электронной сетки, определяет атомные спектры и величину сил и энергий ионизации, притяжения и отрыва атомов (§ 4.14).

Поделиться:
Популярные книги

Голодные игры

Коллинз Сьюзен
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.48
рейтинг книги
Голодные игры

Найденыш

Шмаков Алексей Семенович
2. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Найденыш

Игра Кота 2

Прокофьев Роман Юрьевич
2. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
рпг
7.70
рейтинг книги
Игра Кота 2

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Квантовый воин: сознание будущего

Кехо Джон
Религия и эзотерика:
эзотерика
6.89
рейтинг книги
Квантовый воин: сознание будущего

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

Русь. Строительство империи 2

Гросов Виктор
2. Вежа. Русь
Фантастика:
попаданцы
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи 2

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Энциклопедия лекарственных растений. Том 1.

Лавренова Галина Владимировна
Научно-образовательная:
медицина
7.50
рейтинг книги
Энциклопедия лекарственных растений. Том 1.

Скандальная свадьба

Данич Дина
1. Такие разные свадьбы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Скандальная свадьба

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия