Чтение онлайн

на главную - закладки

Жанры

Баллистическая теория Ритца и картина мироздания
Шрифт:

Оставшиеся малые расхождения, скажем у инертных газов, можно устранить, учтя кроме массы остова (тары) ещё и массу перегородок (упаковочного материала), словно слои пенопласта и картона, отделяющих нуклонные слои, по гипотезе Ридберга. Именно Ридберг, ставший предтечей Ритца в открытии спектральных формул атомов, предположил, что массу ядра образуют не только протоны, но и окружающие их лёгкие оболочки с весом, равным дефекту масс и находящимся в периодической зависимости от номера элемента. Ту же точку зрения развивал и Ван-ден-Брук (см. его биографию, написанную Ю.И. Лисневским, М.: Наука, 1981), впервые открывший связь номера элемента с зарядом ядра, числом протонов и допускавший существования частиц с массой, много меньшей ядра водорода, дающих при соединении с ядрами малые отклонения атомных весов от целых чисел. Эта концепция оболочек (§ 3.6) — естественно следует не только из закона сохранения массы, но также из аналогии ядерных и химических свойств. Подобно тому, как в химии давно известны комплексные и кластерные соединения, в которых центральные группы атомов окружены молекулярными оболочками стандартных масс

и правильных геометрических форм-многогранников, так же и ядра, нуклоны заключены в оболочки-капсулы из стандартных частиц.

Итак, по открытому Ломоносовым закону сохранения, масса ядра (частицы) всегда равна сумме масс компонентов. Любые расхождения, особенно большие, означают, что чего-то не учли, — каких-то летучих нейтральных частиц, реальность которых вытекает из закона сохранения массы. Масса не исчезает и не возникает из энергии. Так, при рождении электрон-позитронных пар частицы, как показали опыты, не рождаются из вакуума, а выбиваются из ядер -лучами. Другой пример: рождение частиц в столкновениях, скажем при соударении протонов в большом адронном коллайдере. Масса mвозникших частиц соотносится с энергией столкнувшихся протонов как E=mc 2. Но это не значит, что частицы родились из энергии. Протоны, разогнанные в ускорителе до огромных скоростей, при столкновениях могут разбивать другие частицы, вырывая крупные осколки, порой тяжелее самих протонов. Ускорители подобны тяжёлой артиллерии, стреляющей снарядами-протонами по зданиям-частицам, как из кирпичиков сложенных из электронов и позитронов (§ 3.9). Чем выше энергия протона, тем больший кусок от здания другой частицы он отколет. Если все частицы состоят из связанных в кристаллы электронов и позитронов, то более энергичные протоны способны разорвать больше таких связей. Потому и масса отколотой частицы будет пропорционально больше. Поскольку энергия связи одного электрона и позитрона E 1=2 mec 2(§ 1.16), то частица из Nэлектронов потребует для своего отрыва энергии E=2 Nmec 2, но 2 Nme— это как раз масса mобразующейся частицы, равная сумме масс составляющих её электронов и позитронов. Потому масса образованной частицы и пропорциональна приложенной энергии E=mc 2.

Два сталкивающихся протона играют роль молота и наковальни. Возможно, между ними оказывается не одна крупная частица (ядро), а много мелких, типа гаммонов, собранных протонами по пути при движении в кольце ускорителя. При соударении все эти частицы сковываются воедино, как металлические заготовки на наковальне кузнеца. Чем выше энергия протонов, тем больше частиц они смогут склепать, припечатать, тем массивней возникшая частица. Итак, рождённые в столкновениях частицы это не преображённая энергия, а лишь продукт синтеза или распада от ударов.

Впрочем, измеряемая масса частицы может, всё же, немного отличаться от суммарной массы её компонентов, как за счёт изменения электромагнитной массы от сближения зарядов (§ 1.17, § 3.18), так и за счёт погрешности "электромагнитных весов", показывающих разный вес частиц, в зависимости от того, движутся они или покоятся (§ 1.15). Так, и некоторые торговцы, дабы обвесить, не кладут, а бросают товар на чашу весов, отчего он весит больше неподвижного. Соответственно, частицы, входящие в состав более сложных частиц-конгломератов и, возможно, участвующие в них в сложном колебательном движении, могут весить чуть меньше, чем в свободном состоянии. Именно весить! Ведь находят их кажущийся, измеряемый неидеальными приборами вес, а не реальную массу, которая должна оставаться неизменной, будучи характеристикой неизменного количества материи. Так и рождается мнимое несоответствие масс частицы и её составляющих, именуемое дефектом масс, хотя правильней его было бы назвать "дефектом весов". Такую природу дефекта масс предполагали ещё Лоренц и Резерфорд, а также Дж. Фокс [2], причём они тоже получили соответствие между исчезнувшим весом и выделяемой энергией E= mc 2с позиций классической электродинамики, что вполне естественно, раз ядерные силы и ядерная энергия — электромагнитной природы (§ 3.12). Однако, нынешние физики считают, что "исчезнувшая" масса реально превращается в энергию и что её выделение в ядерных печах и бомбах доказывает справедливость теории относительности, словно ей они обязаны своим существованием.

Но, с тем же успехом, как видели, можно заявить, что и химические реакции деления, слияния молекул, простые печи и бомбы чем-то обязаны теории относительности. Реально в любых реакциях выделяется лишь внутренняя энергия движения и взаимодействия частей в атомах и элементарных частицах. Ядерные реакции были открыты и исследованы без помощи СТО [139]. А "пропажа" в реакциях крупных масс связана с присутствием ещё не найденных нейтральных частиц или частиц с антимассой. Пусть классический подход и ведёт к отклонению некоторых формальных законов превращения частиц, зато вернётся отвергнутый физиками закон сохранения массы, имеющий для науки фундаментальный смысл.

§ 3.14 Гипотеза индуцированных распадов ядер и частиц

Радиоактивный распад вызывается не разрушением ядра атома, а скорее является вторичным эффектом воздействия внешнего излучения, которые можно разделить на два типа: энергию сохранённую и энергию, поступающую извне.

Никола Тесла [110]

В свете предыдущего анализа ядерных реакций остался последний вопрос: а что же вызывает распад и синтез частиц? Синтез ядер, как известно, идёт лишь в недрах звёзд за счёт их гигантской температуры. Зато, распад, как будто, протекает сам собой, причём весьма странно: частица, ядро распадаются внезапно, — в случайный момент времени, известна лишь вероятность распада. С точки зрения детерминизма и классической физики, это невозможно. Из аналогии химических и ядерных реакций, раз реакция распада взрывчатого вещества не может начаться без толчка, запала, то и распад ядер не самопроизволен. Когда одного физика,

объяснявшего принцип работы ядерной бомбы, спросили, что же вызывает распад первого ядра, запускающего цепную ядерную реакцию, он ответил, что это — великая загадка природы. Действительно, рассмотрим -распад, — вылет из атомного ядра положительно заряженной -частицы. Конечно, -частица ускоряется силой кулоновского отталкивания ядра, выделяя энергию реакции E r, но для того, чтобы это произошло, нужно прежде инициировать реакцию распада: разорвать ядерные связи между -частицей и ядром. То есть, надо сообщить ядру энергию активации E a, аналогичную энергии активации химических реакций и реакций ядерного синтеза (Рис. 132). Самопроизвольно реакции ядерного распада идти не могут. Однако же, — идут! Квантовая механика, с подачи Г. Гамова, объясняет это туннельным эффектом.

Рис. 132. Зависимость потенциальной энергии U взаимодействия ядер от расстояния r между ними.

За счёт неопределённости положения, -частица может ненадолго выйти за потенциальный барьер (туннелирует сквозь него). Тогда, силы кулоновского отталкивания смогут одолеть ядерные, и частица станет всё быстрей удаляться от ядра. Но в классической физике, где царит детерминизм, это невозможно. А, потому, должен быть внешний источник, сообщающий частицам энергию активации. И такой источник есть — это космические лучи, то есть, — приходящее из космоса электромагнитное и корпускулярное излучение, имеющее и мощную проникающую компоненту, для которой земные преграды — не помеха. Это излучение, судя по всему, и вызывает распад радиоактивных веществ и создаётся сверхэнергичными нейтральными частицами, поток которых постоянен и весьма однороден по направлениям. Поэтому, независимо от времени суток, температуры и других условий, от того, лежит ли распадающийся изотоп в свинцовом контейнере или на воздухе, распад всегда идёт с постоянной скоростью. Частота распадов определяется вероятностью попадания в ядро частицы достаточной энергии, — энергии активации. Удар частицы ведёт к возбуждению ядра и его делению, если эта энергия достаточна для разрыва ядерных связей. Чем прочнее частица или ядро, тем реже такое будет происходить, — тем больше время жизни частицы и период полураспада изотопа. Наиболее прочные ядра, обладающие большой энергией активации (меньше энергии налетающих частиц), — стабильны.

Нейтральные частицы, идущие из космоса, имеют, в отличие от сверхэнергичных заряженных (§ 5.10), естественное происхождение, рождаясь, вероятно, в недрах звёзд, — этих природных ядерных реакторах. То, что ядерный распад — это процесс не спонтанный, а индуцированный, заданный внешними факторами, доказывают опыты С. Шноля [167]. Впрочем, вполне возможно, что частицы, возбуждающие ядра, — это просто реоны и ареоны, ударяющие в заряды e +и e ядер и, как раз, обладающие огромной проникающей способностью с высоким постоянством потока (§ 1.5). К тому же, и сам электрон испускает реоны и дёргается, дрожит за счёт отдачи при выстрелах реонами и от ударов других реонов. То есть, подобно тепловым колебаниям атомов в кристаллах, колеблются e +и e в решётке ядер. Когда размах этих колебаний случайно превысит ширину потенциального барьера, ядра делятся. Совсем как тепловое движение атомов вызывает порой их распад, — отрыв электрона (ионизацию), так и тепловые колебания электронов в ядре могут приводить к распаду ядер, — отделению их фрагментов. Таким образом, удары реонов, выброшенных одними электронами к другим (Рис. 7), служат своего рода запальной искрой, провоцирующей взрыв ядра, будто пушечных разрывных ядер с фитилём. Удары реонов, сотрясая ядро, то и дело выводят его из равновесия, рано или поздно приводя к взрыву ядра, так же, как от случайных мелких ударов и искр, порой, "самопроизвольно" детонируют взрыватели бомб и ампулы с нитроглицерином.

Подобное сотрясение, тепловое дрожание частиц, — аналогично квантовой неопределённости их положения, но имеет классическую природу. Интересно, что такие колебания элементарных частиц, напоминающие случайное метание пылинок в луче света, описывал ещё Демокрит, предвосхитивший открытие броуновского движения (§ 4.16). Причём, Демокрит отмечал, что такое движение может возникать не только за счёт внешних ударов других частиц, атомов, но и под действием внутренних причин, под которыми ныне можно понимать испускание электронами реонов [31]. Позднее такие тепловые колебания атомов, ядер и электронов — под действием ударов микрочастиц, снующих со скоростью света, приводились Максвеллом и Пуанкаре в качестве аргумента против теорий Лесажа и Ритца [107]. Но, как выяснилось, если размер реонов достаточно мал, эти колебания будут незначительны, за счёт усреднения. К тому же электрон, под ударами реонов, не наращивает свои "тепловые" колебания бесконечно, поскольку не только поглощает вместе с реонами их энергию, но и столько же отдаёт, когда испускает их обратно (§ 1.5). Однако "тепловые" колебания электронов, предсказанные БТР, вполне достаточны для объяснения естественной ширины спектральных линий, эффектов туннелирования и ядерных распадов, через классическое объяснение принципа неопределённости (§ 4.13).

Выходит, "неопределённость", "случайность", "спонтанность" ядерных распадов — лишь кажущаяся, и носит классический вероятностный характер, а потому распады строго детерминированы и предопределены. Примерно так же, если выстроить много однотипных карточных домиков-пирамид на полу, то с течением времени они будут, один за другим, разваливаться, — казалось бы, спонтанно, в случайный момент времени, по тому же экспоненциальному закону, что и ядра. Однако, каждый такой распад домика (так же как распад ядра), связан с внешними воздействиями (вибрациями пола или дуновениями ветра), носящими случайный характер и, в момент сильных флуктуаций (превышающих прочность карточного домика или ядра), — разрушающими его. Более прочные типы домиков имеют большее время жизни и период "полураспада", и в спокойной обстановке могут простоять годами, но всё равно в итоге рухнут от редких, но сильных флуктуаций, скажем, — от землетрясений, ураганов. То же самое и с атомными ядрами, подверженными "случайным" ударам судьбы.

Поделиться:
Популярные книги

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Истинная со скидкой для дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Истинная со скидкой для дракона

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Черт из табакерки

Донцова Дарья
1. Виола Тараканова. В мире преступных страстей
Детективы:
иронические детективы
8.37
рейтинг книги
Черт из табакерки

Купец VI ранга

Вяч Павел
6. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец VI ранга

Чехов

Гоблин (MeXXanik)
1. Адвокат Чехов
Фантастика:
фэнтези
боевая фантастика
альтернативная история
5.00
рейтинг книги
Чехов

Лекарь для захватчика

Романова Елена
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Лекарь для захватчика

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Глинглокский лев. (Трилогия)

Степной Аркадий
90. В одном томе
Фантастика:
фэнтези
9.18
рейтинг книги
Глинглокский лев. (Трилогия)

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ