Чтение онлайн

на главную - закладки

Жанры

Шрифт:

И однако, будем справедливыми. В одной из важнейших функций всякого живого организма белковым молекулам верно и очень изобретательно ассистируют также и молекулы другого важнейшего класса биополимеров. Ибо, как справедливо отметил один известный биохимик, белки могут все, кроме одного: они не могут копировать самих себя.

Назад к нуклеиновым кислотам

Наше возвращение к нуклеиновым кислотам вызвано вовсе не тем, что авторские пристрастия вдруг изменились и белки перестали ходить у нас в любимчиках. Просто для дальнейшего прославления роли белков в жизненных процессах нам необходимо познакомиться со схемой их синтеза, и здесь никак не обойтись без деталей некоторых молекулярных механизмов,

где первостепенную роль играют молекулы РНК и ДНК. В первой главе об этих процессах — самокопировании молекул ДНК, размножении РНК-овых копий, синтезе белка — уже шла речь, но тогда мы вынуждены были обойтись чисто формальным, символическим их описанием (пусть даже и хореографическим). Теперь же, вооруженные запасом необходимых сведений о молекулярных структурах и взаимодействиях, мы готовы заново рассмотреть и молекулы нуклеиновых кислот, и процессы их воспроизведения.

Итак, прежде всего о структуре комплементарных парных комплексов молекул ДНК, о которых шла речь в начале книги. Комплементарные пары оснований, напоминаем, образуют аденин с цитозином и гуанин с тимином. Аденин и гуанин относятся к числу так называемых пуриновых оснований; эти основания представляют собой два сочлененных цикла — шестичленный и пятичленный, образующих одну плоскость. Два других основания, цитозин и тимин — пиримидиновые, содержат только шестичленный цикл. Таким образом, схема соединения оснований такова, что большое основание образует комплементарную пару с малым, но никогда — большое с большим или малое с малым. На вопрос же о том, почему большой гуанин объединяется именно с малым цитозином, но не с малым тимином, также ответить сравнительно легко. При сближении определенным образом ориентированных ароматических колец гуанина и цитозина между ними возникают три водородные связи, причем группы, участвующие в их образовании, хорошо соответствуют друг другу. При сближении аденина и тимина также появляются водородные связи, но только две. А вот между аденином и цитозином водородные связи либо не образуются вовсе, либо, если и возникают, то очень слабые.

С учетом этих подробностей становится ясной природа сил, удерживающих комплементарные нити ДНК вместе: пара комплементарных оснований образует общую плоскость из двух колец, стянутых водородными связями. При этом такие вот плоские элементы, складываясь друг с другом, образуют как бы стопку правильной формы. Эта стопка удерживается невалентными силами, а вдоль нее, закручиваясь в форме спирали, тянутся две нити регулярной, повторяющейся части молекулы — сахаро-фосфатный остов. Поэтому такая структура и называется двойной спиралью ДНК.

Впрочем, кто же в наши-то дни этого не знает! Знаменитая двойная спираль. В некотором роде символический знак новой биологии. На фасаде главного корпуса Академии наук БССР, возведенном несколько десятилетий назад, есть барельефы с изображением символов науки, имевших хождение в те годы, — глобуса, реторты и электрофорной машины. Так вот, если в ближайшее время президиум академии решит заменить их чем-то более созвучным эпохе, то, по нашему мнению, скорее всего это будут спутник, стилизованный атом лития (три электрона), и, конечно, двойная спираль — символ чего-то биологического.

Здесь надо отметить, что очень широко распространено даже среди части биологов совершенно ошибочное представление, будто образовывать спиральные структуры могут только биологические полимеры и что именно в этом заключен сам таинственный смысл их «биологичности». Однако спираль — наиболее естественное состояние почти всякого полимера при невысоких температурах; в кристаллической форме до 90 процентов полимерных молекул свернуты в спираль, в растворах также могут спирализовываться значительные участки зауряднейших, хорошо знакомых нам из повседневного быта полимеров — полиэтилена, полихлорвинила, нейлона и т. д. Так что способность молекул белков и ДНК к образованию спиральной структуры не является каким-то загадочным свойством, выделяющим их в ряду прочих полимеров. Но существование именно такой пространственной структуры спирали ДНК — факт в высшей степени замечательный, и его открытие Дж. Уотсоном и Ф. Криком в 1953 году по праву считается одним из главных событий биологии XX века.

Собственно

говоря, «открытие» не вполне подходящее слово. Дж. Уотсон и Ф. Крик предсказали эту структуру, исходя из самых общих положений кристаллографии и рентгенограмм, истолковать которые можно было очень и очень по-разному. Их работа не только положила начало триумфальному (как, по крайней мере, кажется со стороны) шествию молекулярной биологии — она утвердила право биологов на теоретические исследования, считавшиеся до тех пор почти неприличными. Сам великий Э. Чаргафф — звезда первой величины в области исследования нуклеиновых кислот — отнесся к намерению Дж. Уотсона и Ф. Крика расшифровать структуру ДНК чисто умозрительными методами с великолепным ироническим презрением. Буквально накануне публикации Дж. Уотсоном и Ф. Криком их эпохальной статьи он справлялся в письме к руководителю лаборатории Дж. Кендрью, чем там занимаются его клоуны от науки. Такова была участь биолога-теоретика в недавнем прошлом (к сожалению, также и значительное время спустя — авторам известны многочисленные примеры).

Уже сама структура двойной спирали подсказывает способ реализации процесса репликации. Ведь если основания обладают столь четко выраженным попарным сродством, значит, у одиночной нити ДНК каждый свободный нуклеотид будет «стараться» занять место напротив своего партнера. А после этого стоит только последовательно соединить их, выстроенных таким образом, в одну нить. Так оно примерно и происходит на самом деле. В процессе репликации двойная спираль раскручивается, и на каждой отделившейся ее нити «нарастает» новая комплементарная нить.

Присоединившиеся нуклеотиды «сшиваются» с остальной частью наращиваемой нити при помощи специального фермента. Вот и все. Раскручивание старой и наращивание новых спиралей продолжается до тех пор, пока спираль не раскрутится полностью, а каждая из ее нитей образует со свежесинтезированной комплементарной копией новую двойную спираль.

Схема процесса транскрипции — синтеза молекул РНК на матрице ДНК — в принципе сходна с репликацией; это и неудивительно, если вспомнить значительную структурную близость молекул ДНК и РНК. Наиболее существенное отличие заключается в том, что комплементарная последовательность РНК копирует не всю молекулу ДНК, а только ее фрагменты; важно также, что в качестве матрицы для синтеза РНК используется только одна из нитей, образующих двойную спираль, но не ее комплементарная копия. В искусственных условиях удается получить смешанную двойную спираль, образованную молекулами РНК и ДНК; такие спирали характерны для некоторых вирусов.

Как синтезируются белки

И процесс репликации, и родственный ему процесс транскрипции способны вызвать немало удивления совершенством своей организации даже в столь бледном и лишенном подробностей описании. Однако по сравнению с молекулярными механизмами биосинтеза белка они выглядят сравнительно простыми и почти очевидными.

В процессе синтеза молекул нуклеиновых кислот расположение нуклеотидов в определенном порядке происходит как бы само по себе, за счет сродства каждого из нуклеотидов к своему комплементарному партнеру. Первоначально биологи предполагали, что и при синтезе белка на матричной молекуле РНК происходит нечто подобное: каждая аминокислота стремится «примкнуть» к кодирующему ее триплету, а последовательное соединение аминокислот осуществляется особым ферментом.

Начались поиски принципов структурного соответствия между аминокислотами и кодирующими их триплетами, более того, кое-кому такие принципы удалось даже установить. Многие значительные открытия побуждают исследователей действовать по аналогии и по этой самой аналогии открывать несуществующие вещи. Это относится, конечно, не только к биологам. Скажем, очень часто в качестве примера блестящего успеха теоретической научной мысли приводят открытие французским астрономом У. Леверье планеты Нептун — знаменитое «открытие на кончике пера».

Поделиться:
Популярные книги

Шаман. Похищенные

Калбазов Константин Георгиевич
1. Шаман
Фантастика:
боевая фантастика
попаданцы
6.44
рейтинг книги
Шаман. Похищенные

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Имя нам Легион. Том 9

Дорничев Дмитрий
9. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 9

Адвокат Империи 7

Карелин Сергей Витальевич
7. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 7

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Сойка-пересмешница

Коллинз Сьюзен
3. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.25
рейтинг книги
Сойка-пересмешница

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Божьи воины. Трилогия

Сапковский Анджей
Сага о Рейневане
Фантастика:
фэнтези
8.50
рейтинг книги
Божьи воины. Трилогия

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5