Бесконечный регресс и основания математики
Шрифт:
Поразительно, как специалисты по математической логике, которые до отвратительности заботились о строгости и стремились достигнуть абсолютной достоверности, смогли вляпаться в слякоть индуктивизма. Например, А. Френкель, известный логик, решился утверждать, что некоторые аксиомы логики получают свой "полный вес" в силу "доказательства их следствий" (Fraenkel, 1927, р.61).
Подобно Ньютону, создававшему небесную механику, Рассел осознал дефектность евклидианской трактовки математики. Некоторые из его последователей сделали из порока добродетель, не проследив его важные импликации. Россер, например, писал:
"Мы хотим выяснить один вопрос, касающийся использования слова "аксиома". Первоначально Евклид использовал это слово, имея в виду "самоочевидную истину". Это использование слова "аксиома" долгое время было абсолютно непререкаемо в математических кругах. Для нас же аксиому составляет множество произвольно избранных предложений, которого вместе с правилом modus ponens
Россер, очевидно, подразумевал "все те и только те", поскольку он, очевидно, не защищал внутренне противоречивые системы аксиом. Но какие предложения мы хотим вывести? Те, которые являются самоочевидными истинами? В этом случае утверждение Россера только переносило бы трудность самоочевидности от аксиом к "предложениям, которые мы хотим вывести". Рассел сам в отличие от Ньютона никогда не превращал в победу свое поражение. Он презирал этот вид "постулирования": "Метод «постулирования», к которому мы идем, наделен многими преимуществами: это те же самые преимущества, которыми обладает мошенник над честным трудягой" (Russell, 1919, р. 71).
Постулирующие не обязательно авторитарны, они могли бы быть "либералами" и заявлять, что для них главное "аксиоматизация" любой непротиворечивой совокупности предложений, истинных или ложных. Эта игра не имеет ничего общего с истиной и передачей истины. Рассел никогда даже не рассматривал эту возможность. Отвергая постулирование, расшатывающее его евклидианские надежды, он в отчаянии ставил на индукцию, которая, как он надеялся, изгонит призрак погрешимости знания сначала из математики, потом из естественных наук: "Я не вижу какого-либо иного пути, нежели догматическое допущение, что мы знаем этот принцип индукции или его некоторый эквивалент; единственная альтернатива - выбросить почти все, что почитается наукой и здравым смыслом как знание" (Russell, 1944, р. 683). Он никогда не рассматривал возможности того, что математика может быть предположительной, не допуская, что предположительность не ведет с необходимостью к полной сдаче разума.
Лишь исторически интересны небольшие детали того "отступления от пифагореизма" (Russell, 1959, chap. XVII), которое совершил Рассел. "Превосходная достоверность, которую я всегда хотел найти в математике, - писал он, - была утрачена в тупиковой путанице" (ibid, р. 212). Он был вынужден сдать евклидианизм, который покоился бы на "мысли, освобожденной от чувства… Надежда найти совершенство, окончательность и достоверность, - писал он, - была утрачена" (ibid). Фактически он так и не освободился от того замешательства, в которое его привела неподатливость математики. В работе (Russell, 1912; Рассел, 1914) он колебался, излагая свое воззрение на математику. Совершив удивляющий, но понятный разворот на 180°(volte-face), он отдал предпочтение Канту, который в конце концов был его союзником в решении огромной задачи обосновать науку и победить скептицизм (Russell, 1959, р. 82-84, 87, 109). Он написал осторожное предисловие к своей книге (Russell, 1919), сокрушаясь, что это книга, собственно, по философии математики, где "относительная достоверность еще не достигнута". "Далеко идущие усилия были приложены, чтобы избежать догматизма в таких вопросах, которые ещё открыты для серьезного сомнения". В его книге (Russell, 1948; Рассел, 1957) математическое знание, на которое он раньше полагался как на парадигму человеческого знания, не обсуждается вообще. "Парадокс Рассела" заставил Фреге немедленно сдать философию математики.* [24] Рассел упорствовал некоторое время, но затем последовал за ним.
24
*Это неверно. Лакатос сам потом признал это.
– Прим. ред.
Проследим теперь те заключения, которые Рассел отказывался проследить. Бесконечный регресс в доказательствах и определениях не может быть остановлен евклидианской логикой. Логика может объяснить математику, но не доказать ее. Она ведет к утонченной спекуляции, какой угодно спекуляции, кроме тривиально истинной. Область тривиальности ограничивается неинтересным разрешимым фрагментом из арифметики и логики, но даже этот тривиальный фрагмент временами расползается под ударами детривиализующей скептической критики.
Логическая теория математики такая же увлекательная, изощренная спекуляция, как и любая научная теория. Это эмпирицистская теория, и, следовательно, если не показана её ложность, она остается навеки предположительной.
Догматики, презирающие предположения, могут выбирать между надеждами на крайнюю тривиализацию и надеждами оправдать индукцию. Скептики отметят, что, устанавливая эмпирицистский характер расселовской теории, мы лишь демонстрируем, что она не содержит какого-либо знания, что она - только софизм и иллюзия. Чистый
Эмпирицистская теория, однако, должна пройти строгие проверки. Как могли бы мы проверить расселовскую логику? Все истинные базовые предложения - разрешимые фрагменты арифметики и логики - выводимы в ней, и таким образом она, по-видимому, не имеет потенциальных фальсификаторов. Так что единственный способ критики этой своеобразной эмпирицистской теории - проверить ее на непротиворечивость. Это ведет нас к гильбертовскому кругу идей.
3. Остановка бесконечного регресса за счет тривиальной метатеории
Гильбертовская* [25] метаматематика была "замыслена, чтобы раз и навсегда положить конец скептицизму" (Ramsey, 1926, р. 68). Таким образом, ее цель была та же, что и у логицизма:
"Приходится принять, - писал Гильберт в 1926 г., - что ситуация, в которую мы попали из-за парадоксов, нетерпима. Давайте представим: в математике, в этой парадигме достоверности и истины, наиболее общая формация понятий и выводов, которые учатся, изучаются и используются, ведет к абсурдностям. Но если даже математика терпит неудачу, где же нам искать достоверность и истину? Есть, однако, удовлетворительный метод обойти парадоксы".
25
*Д. Гильберт (1862-1893). Его биографии посвящена книга: Рид К. Гильберт. С приложением обзора Г. Вейля математических трудов Гильберта. М.: Наука, 1977.
Гильбертовская теория базируется на идее формальной аксиоматики. Гильберт утверждал, что: а) все формально доказанные арифметические высказывания - арифметические теоремы - будут с достоверностью истинными, если формальная система непротиворечива, т.е. если А и не-А не являются одновременно теоремами; б) все арифметические истины могут быть формально доказаны; в) метаматематика, эта новая ветвь математики, устанавливаемая, чтобы доказывать непротиворечивость и полноту формальных систем, будет особым случаем евклидианской теории - "финитной" теорией с тривиально истинными аксиомами, содержащими только совершенно общеизвестные термины, и с тривиально безопасными выводами. "Установлено, что принципы, используемые в метаматематическом доказательстве того, что аксиомы математики не ведут к противоречиям, настолько очевидно истинные, что не позволяют сомневаться в себе даже скептикам" (Ramsey, 1926, р. 68). Метаматематическое доказательство - это "конкатенация самоочевидного интуитивного (inhaltlich) проникновения" (Neumann, 1927, р. 2). Арифметические истины - и ввиду уже совершенной арифметизации математики все виды математических истин - будут покоиться на твердой, тривиальной, "глобальной" интуиции и таким образом, как говорил Гильберт, на "абсолютной достоверности" (Гильберт, 1948, с.391).
Решающим препятствием на пути этой надежды на евклидианскую метаматематику явилась вторая теорема Гёделя. Бесконечный регресс в доказательстве не может иссякнуть в "финитной" тривиальной метатеории: доказательства непротиворечивости должны содержать достаточно изощренности, чтобы представить спорной непротиворечивость теории, в которой они проводятся, и, следовательно, они не могут не быть погрешимыми. Например, предположение Гольдбаха о том, что любое четное число есть сумма двух простых чисел, формально могло бы быть доказано завтра, но мы никогда не узнаем, что оно истинно. Ибо оно было бы истинно, только если метаматематика, метаметаматематика и т.д. до бесконечности были бы непротиворечивы. Этого мы никогда не познаем. Формализация может дать сбой, и наша аксиоматическая система может оказаться совсем без модели.