Беспамятство как исток (Читая Хармса)
Шрифт:
_________________
5 Флоренский П. А. У водоразделов мысли. М.: Правда, 1990. С. 271.
296 Глава 10
образом, принимает форму некоего бесконечного "пробадения" в центр.
Круг, шар и все объекты такой формы интересны для Хармса прежде всего тем, что они содержат в себе все вообразимые числа, то есть бесконечность, но не как "ничто", а как "что-то". Бесконечность оказывается заключенной в обозримую форму, она начинает напоминать актуальную бесконечность Георга Кантора.
Одна из особенностей потенциальной бесконечности, представленной в беспредельно нарастающей прогрессии, заключается в том, что она не может быть выражена порядковым
...мы можем сделать акт отвлечения от природы элементов. Тогда каждый элемент даст от себя изображение в духе -- схему неразличимого единства, единицу, группа же, как целое, даст свой идеальный оттиск, интеллектуальный образ-схему множества, устроенного единством, или, иначе говоря, схему единства, но не пустого, а объединяющего собою множество6.
Числа, описывающие эти множества -- мощности, типы порядка и т. д., оказываются числами, описывающими бесконечность, преодолевающими конечность натуральных, количественных чисел. Кантор назвал эти числа трансфинитными, то есть выходящими за предел.
Хармс проявлял существенный интерес и к кругу идей Кантора, и к формальной логике, столкнувшейся с рядом парадоксов, вытекающих из теории множеств. Он полуиронически-полусерьезно предположил существование особой области счисления, которую он воображал себе как некое подобие трансфинитной области, но помещал ее не по ту сторону предела в бесконечности, а ниже уровня нуля. Для этой области Хармс даже придумал собственное определение. Он назвал ее числовое выражение "цисфинитными" числами. Вот запись в дневнике, явно вдохновленная теорией множеств:
Числа в своем нисхождении не оканчиваются нулем. Но система отрицательных количеств -- вымышленная система. Я предполагал создать числа меньше нуля -- Cisfmitum. Но это тоже было неверно. Нуль заключает в себе самом эти неизвестные нам числа. Может быть правиль
________________
6 Священник Павел Флоренский. О символах бесконечности (Очерк идей Г. Кантора) // Собр. соч.: В 4 т. Т. 1. М.: Мысль, 1994. С. 106-107.
Вокруг ноля 297
но было бы считать эти числа как некие нулевые категории. Таким образом, нисходящий ряд чисел принял бы такой вид:
... 3 -- категория III
2 -- категория II
1 -- категория I
0 -- категория 0
категория двух 0-ей
категория трех 0-ей
категория четырех 0-ей ... и т. д.
Предлагаю нуль, образующий некие категории, называть ноль и изображать не в виде удлиненной окружности 0, а точным кружком (ГББ, 115-116).
Эти нулевые категории -- это аналоги канторовских множеств. В левой колонке на их месте ничего не стоит. Кантор для первого количественного числительного, превышающего бесконечное число "омегу" -- w, придумал название "алеф-один", а для определения первого бесконечного количественного числительного -- "алеф-ноль".
Посмотрим, как он мыслит свой цисфинит. 3, 2, 1 -- это множества, состоящие из конечного количества единиц: из трех, двух и одной единиц. Единица для таких категорий -- это базисный элемент, основание, она укладывается внутри множества как некоего единства, на ней, из нее это множество строится. Множества, состоящие из единиц, -- это множества рациональных чисел.
Цисфинитные числа -- это порядковые числительные, числа, описывающие тип порядка в множествах, в основании которых лежит не единица, а "ноль". Если "ничто", нуль, это все-таки -- "что-то", то мы можем получить категории, которые складываются из двух, трех и т. д. нолей. Такие категории возможны еще и потому, что число, конечно, не более чем абстракция, не обязательно имеющая некое материальное наполнение. Нуль в таком случае берется не как знак отсутствия, а именно как число. Сама по себе идея цисфинитных множеств строится, конечно, по типу канторовских трансфинитов.
На обороте рукописи стихотворения "Звонить-лететь" (1930) Хармс приводит графическую схему, поясняющую, что такое область Cisfi-nitum:[оо - здесь как символ бесконечности [email protected]]
– t
m m
+
– оо ---------
– --------
0
– -------
– ------------о-----------
– ---------- oо t
+
с. + 0 --------
– --------
– --------
– --------
– --------- +oot7
_____________
7 Приведено в комментариях А. Герасимовой и А. Никитаева к "Лапе" Хармса (Театр. 1991. No11. С. 35).
298 Глава 10
На верхней прямой области трансфинита обозначены буквами t и -t, они расположены в области бесконечного, то есть за пределом натурального ряда чисел и бесконечного ряда отрицательных величин, которые Хармс считает "выдуманными".
На нижней прямой отрицательных величин нет вовсе. Их место занимает цисфинит, располагающийся как бы не слева от нуля, а в области нуля и оказывающийся симметричным канторовскому транс-финиту.
Цисфиниту посвящен пародийный квазиматематический трактат Хармса "Падение ствола", написанный в виде письма Леониду Липавскому. Этот трактат по некоторым внешним характеристикам похож на рассуждение из области теории множеств, хотя с математической точки зрения он не имеет смысла.
В начале трактата Хармс проводит различие между науками творческой и нетворческой, к последней относится "формальная логика", а к первой -искусство. Нетворческая наука опирается на постулаты, в основании которых, как следует из изложения, лежит единица. Хармс замечает, что мы можем подменять в таких множествах одни "постулаты" на другие, но эта подмена не будет означать метаморфозы самого множества. Множество Хармс обозначает словом "ствол". Этот "ствол", конечно, не имеет никакого отношения к математике, это чисто хармсовский поэтический образ, переводящий все рассуждения о числах в область словесных материй. Ствол -- это "некий континуум", или, иными словами, единство, опирающееся на исчислимое через единицу (которая может быть уподоблена колу) множество. Творческая дисциплина относится к такой числовой области, в которой, по выражению Хармса, "ствол падает". Падение ствола задается особой процедурой: